AIGC: 如何使用LangChain优化openAI

我正在参加年度优秀作者评选,公主王子们请帮我投票

前言

今天我们来聊聊使用LangChain来优化openAI,提高开发速度

准备工作

通过 Google Colab,用户可以创建和共享Jupyter笔记本,运行Python代码,访问云端计算资源,以及使用大量开源机器学习框架和库,而无需担心硬件或软件配置问题。而我们这里需要一点点的python 和 openai结合,当我们使用Google Colab 运行python时,可以不用担心配置环境。

注意,以上这些网站均为外网,当我们访问这些网站时,需要 "搭梯子",具体可以去网上看看教程

  1. 首先进入openai网站,拿到我们的sdk。教程如下:

选择VPI

复制我们的API keys, 如果没有的话点击Create new secret key,这样我们就可以拿到我们的sdk了。

接下来我们进入Google Colab网站,将代码放进此网站运行。这个网站十分的方便,当我们使用Google Colab 运行python时,可以不用担心配置环境。

点击文件-> 新建笔记本 点击左上角 +代码

正文

  1. 安装LangChain和OpenAI,点击左边播放键运行
    • !pip install langchain==0.0.316 # 极简AI开发框架
    • !pip install openai==0.28.1
  1. 导入模块
js 复制代码
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
import os

这里导入了LangChain的ChatOpenAI聊天模型以及相关的模块,还导入了用于构建用户消息的HumanMessage类和用于设置环境变量的os模块。

python 复制代码
os.environ['OPENAI_API_KEY'] = ''

chat = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
# openai 接受的就是一个数组
response = chat([HumanMessage(content="Hello LangChain!")])
print(response)
  1. 设置OpenAI API密钥:

    python 复制代码
    os.environ['OPENAI_API_KEY'] = ''

    设置OpenAI API密钥,这个密钥是用来与OpenAI的聊天模型通信的。

  2. 创建ChatOpenAI实例:

    python 复制代码
    chat = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")

    创建了ChatOpenAI类的一个实例,指定了一些参数,如temperature(温度)和model_name(模型名称)。温度为0表示生成的文本更加确定性。

  3. 构造用户消息并调用模型:

    python 复制代码
    response = chat([HumanMessage(content="Hello LangChain!")])

    使用构造的ChatOpenAI实例,传入一个包含用户消息的数组,调用聊天模型,获取模型的响应。这里输入你想要提出的问题

  4. 打印模型的响应:

    python 复制代码
    print(response)

    打印模型的响应结果。

    我们来看看打印结果:

相关推荐
程序员小远13 小时前
软件测试之压力测试详解
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·压力测试
AIGC_北苏13 小时前
EvalScope模型压力测试实战
人工智能·语言模型·模型评估·框架评估
CheungChunChiu13 小时前
AI 模型部署体系全景:从 PyTorch 到 RKNN 的嵌入式类比解析
人工智能·pytorch·python·模型
分布式存储与RustFS13 小时前
存算一体架构的先行者:RustFS在异构计算环境下的探索与实践
大数据·人工智能·物联网·云原生·对象存储·minio·rustfs
Scc_hy13 小时前
强化学习_Paper_2000_Eligibility Traces for Off-Policy Policy Evaluation
人工智能·深度学习·算法·强化学习·rl
IT小哥哥呀13 小时前
论文见解:REACT:在语言模型中协同推理和行动
前端·人工智能·react.js·语言模型
来酱何人13 小时前
低资源NLP数据处理:少样本/零样本场景下数据增强与迁移学习结合方案
人工智能·深度学习·分类·nlp·bert
ChinaRainbowSea13 小时前
11. Spring AI + ELT
java·人工智能·后端·spring·ai编程
玄月三初13 小时前
超算互联网平台配置老一点的mmsegmentation环境
人工智能·计算机视觉·语义分割
AI新兵13 小时前
AI大事记12:Transformer 架构——重塑 NLP 的革命性技术(下)
人工智能·架构·transformer