机器学习和机器学习解决方案架构

1.机器学习的生命周期

(1).业务理解:确定机器学习要解决的问题,以及确定机器学习项目是否成功的业务性能指标

(2).数据理解和数据准备:根据业务收集数据

(3).模型训练和评估

(4).模型部署

(5).模型监控:由于数据的变化,我们可能需要监视这些变换,根据情况调整

(6).业务指标跟踪

2.机器学习解决方案架构

(1).业务理解和机器学习转型

比如在就医的时候,需要咨询自己应该挂什么科室,这个过程就很费时间。再比如咨询法律问题,再政务的窗口引导等等,都是一种痛处,能不能使用机器学习的方法来解决呢?我觉得可以使用自然语言处理来解决这些东西。

(2).机器学习技术的识别和验证

确实业务能用什么技术实现

(3).系统的架构设计与实现

机器学习平台的技术架构设计为技术实现提供了理想的基础。

机器学习平台要有以下几个核心功能

(1).数据探索和实验:数据科学家可以使用机器学习平台进行数据探索,实验,模型构建,模型评估。总之就是提供了各种分析工具,以及管理工具。

(2).数据管理和大规模数据处理:对数据进行存储,访问,清洗和特征工程等等

(3).模型训练基础设施管理。机器学习需要的计算资源。存储,网络配置,还要相关机器学习库和框架。

(4).模型托管和服务:为机器学习模型的预测和批量处理提供技术能力

(5).模型管理:管理和跟踪经过训练的机器学习模型

(6).特征管理

(4).机器学习平台工作流自动化

(5).安全和合规

相关推荐
搞笑的秀儿18 分钟前
信息新技术
大数据·人工智能·物联网·云计算·区块链
阿里云大数据AI技术37 分钟前
OpenSearch 视频 RAG 实践
数据库·人工智能·llm
XMAIPC_Robot1 小时前
基于ARM+FPGA的光栅尺精密位移加速度测试解决方案
arm开发·人工智能·fpga开发·自动化·边缘计算
加油吧zkf1 小时前
YOLO目标检测数据集类别:分类与应用
人工智能·计算机视觉·目标跟踪
Blossom.1181 小时前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn
天天扭码1 小时前
AI时代,前端如何处理大模型返回的多模态数据?
前端·人工智能·面试
巴伦是只猫1 小时前
【机器学习笔记 Ⅱ】1 神经网络
笔记·神经网络·机器学习
难受啊马飞2.02 小时前
如何判断 AI 将优先自动化哪些任务?
运维·人工智能·ai·语言模型·程序员·大模型·大模型学习
顺丰同城前端技术团队2 小时前
掌握未来:构建专属领域的大模型与私有知识库——从部署到微调的全面指南
人工智能·deepseek
许泽宇的技术分享2 小时前
用.NET9+Blazor+Semantic Kernel,打造企业级AI知识库和智能体平台——AntSK深度解读
人工智能