机器学习和机器学习解决方案架构

1.机器学习的生命周期

(1).业务理解:确定机器学习要解决的问题,以及确定机器学习项目是否成功的业务性能指标

(2).数据理解和数据准备:根据业务收集数据

(3).模型训练和评估

(4).模型部署

(5).模型监控:由于数据的变化,我们可能需要监视这些变换,根据情况调整

(6).业务指标跟踪

2.机器学习解决方案架构

(1).业务理解和机器学习转型

比如在就医的时候,需要咨询自己应该挂什么科室,这个过程就很费时间。再比如咨询法律问题,再政务的窗口引导等等,都是一种痛处,能不能使用机器学习的方法来解决呢?我觉得可以使用自然语言处理来解决这些东西。

(2).机器学习技术的识别和验证

确实业务能用什么技术实现

(3).系统的架构设计与实现

机器学习平台的技术架构设计为技术实现提供了理想的基础。

机器学习平台要有以下几个核心功能

(1).数据探索和实验:数据科学家可以使用机器学习平台进行数据探索,实验,模型构建,模型评估。总之就是提供了各种分析工具,以及管理工具。

(2).数据管理和大规模数据处理:对数据进行存储,访问,清洗和特征工程等等

(3).模型训练基础设施管理。机器学习需要的计算资源。存储,网络配置,还要相关机器学习库和框架。

(4).模型托管和服务:为机器学习模型的预测和批量处理提供技术能力

(5).模型管理:管理和跟踪经过训练的机器学习模型

(6).特征管理

(4).机器学习平台工作流自动化

(5).安全和合规

相关推荐
Oculus Reparo!1 分钟前
书生大模型强化学习 RL 实践(Internlm2.5-1.8B swift GRPO gsm8k)
人工智能
StarChainTech1 分钟前
无人机租赁平台:开启智能租赁新时代
大数据·人工智能·微信小程序·小程序·无人机·软件需求
万行2 分钟前
机器人系统SLAM讲解
开发语言·python·决策树·机器学习·机器人
Quintus五等升3 分钟前
深度学习②|实现人数回归预测
人工智能·深度学习·学习·机器学习·回归
可乐要加冰^-^4 分钟前
RL for LLM(large language model)
人工智能·语言模型·自然语言处理
大模型最新论文速读18 分钟前
ProFit: 屏蔽低概率 token,解决 SFT 过拟合问题
人工智能·深度学习·机器学习·语言模型·自然语言处理
cskywit23 分钟前
VMamba环境本地适配配置
人工智能·深度学习·mamba
victory043125 分钟前
minimind SFT失败原因排查和解决办法
人工智能·python·深度学习
逐梦苍穹26 分钟前
世界模型通俗讲解:AI大脑里的“物理模拟器“
人工智能·世界模型
囊中之锥.27 分钟前
机器学习算法详解:DBSCAN 聚类原理、实现流程与优缺点分析
算法·机器学习·聚类