数据可视化---饼图、环形图、雷达图

类别 内容导航
机器学习 机器学习算法应用场景与评价指标
机器学习算法---分类
机器学习算法---回归
机器学习算法---聚类
机器学习算法---异常检测
机器学习算法---时间序列
数据可视化 数据可视化---折线图
数据可视化---箱线图
数据可视化---柱状图
数据可视化---饼图、环形图、雷达图
统计学检验 箱线图筛选异常值
3 Sigma原则筛选离群值
Python统计学检验
大数据 PySpark大数据处理详细教程
使用教程 CentOS服务器搭建Miniconda环境
Linux服务器配置免密SSH
大数据集群缓存清理
面试题整理 面试题---机器学习算法
面试题---推荐系统

  • 饼状图:展示了四个类别(A, B, C, D)的数据,每个类别的比例标注在图中。
  • 环形图:与饼状图使用相同的数据,但采用环形设计,以不同的视觉风格呈现相同的信息。
  • 雷达图:展示了六个不同指标(Metric 1 至 Metric 6)的数据,以雷达图的形式展现每个指标的数值。
    这些图表可以根据您的数据和需求进行调整,以便更好地呈现信息。您可以改变数据集、标签和标题来自定义这些图表。
python 复制代码
import matplotlib.pyplot as plt
import numpy as np

def plot_pie_chart(data, labels, title="Pie Chart"):
    """
    绘制饼状图。
    
    :param data: 包含数值的列表。
    :param labels: 与数据相对应的标签列表。
    :param title: 图表的标题。
    """
    fig, ax = plt.subplots()
    ax.pie(data, labels=labels, autopct='%1.1f%%', startangle=140)
    ax.axis('equal')  # Equal aspect ratio ensures the pie chart is circular.
    plt.title(title)
    plt.show()

# 示例数据
pie_data = [35, 25, 25, 15]
pie_labels = ['Category A', 'Category B', 'Category C', 'Category D']

# 绘制图表
plot_pie_chart(pie_data, pie_labels, title="Example Pie Chart")
python 复制代码
import matplotlib.pyplot as plt
import numpy as np

def plot_donut_chart(data, labels, title="Donut Chart"):
    """
    绘制环形图。
    
    :param data: 包含数值的列表。
    :param labels: 与数据相对应的标签列表。
    :param title: 图表的标题。
    """
    fig, ax = plt.subplots()
    ax.pie(data, labels=labels, autopct='%1.1f%%', startangle=140, pctdistance=0.85)
    
    # Draw a circle at the center of pie to make it look like a donut
    centre_circle = plt.Circle((0,0),0.70,fc='white')
    fig = plt.gcf()
    fig.gca().add_artist(centre_circle)
    
    ax.axis('equal')  # Equal aspect ratio ensures the pie chart is circular.
    plt.title(title)
    plt.show()

# 示例数据
pie_data = [35, 25, 25, 15]
pie_labels = ['Category A', 'Category B', 'Category C', 'Category D']

# 绘制图表
plot_donut_chart(pie_data, pie_labels, title="Example Donut Chart")
python 复制代码
import matplotlib.pyplot as plt
import numpy as np

def plot_radar_chart(data, labels, title="Radar Chart"):
    """
    绘制雷达图。
    
    :param data: 包含数值的列表。
    :param labels: 与数据相对应的标签列表。
    :param title: 图表的标题。
    """
    num_vars = len(labels)
    angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()
    data += data[:1]
    angles += angles[:1]

    fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
    ax.fill(angles, data, color='blue', alpha=0.25)
    ax.plot(angles, data, color='blue', linewidth=2)  # Draw the outline of our data
    ax.set_yticklabels([])
    ax.set_xticks(angles[:-1])
    ax.set_xticklabels(labels)

    plt.title(title, y=1.1)
    plt.show()

# 示例数据
radar_data = [4, 5, 6, 3, 2, 5]
radar_labels = ['Metric 1', 'Metric 2', 'Metric 3', 'Metric 4', 'Metric 5', 'Metric 6']

# 绘制图表
plot_radar_chart(radar_data, radar_labels, title="Example Radar Chart")
相关推荐
没有梦想的咸鱼185-1037-16635 小时前
【高分论文密码】大尺度空间模拟预测与数字制图
信息可视化·数据分析·r语言
m0_5750463412 小时前
FPGA数据流分析
数据分析·fpga·数据流分析
思辨共悟13 小时前
Python的价值:突出在数据分析与挖掘
python·数据分析
用户Taobaoapi201416 小时前
京东图片搜索相似商品API开发指南
大数据·数据挖掘·数据分析
带娃的IT创业者16 小时前
《AI大模型应知应会100篇》第69篇:大模型辅助的数据分析应用开发
人工智能·数据挖掘·数据分析
IT研究室18 小时前
大数据毕业设计选题推荐-基于大数据的贵州茅台股票数据分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·spark·毕业设计·源码·数据可视化·bigdata
IT毕设梦工厂20 小时前
大数据毕业设计选题推荐-基于大数据的国家基站整点数据分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·spark·毕业设计·源码·数据可视化
数据科学作家1 天前
学数据分析必囤!数据分析必看!清华社9本书覆盖Stata/SPSS/Python全阶段学习路径
人工智能·python·机器学习·数据分析·统计·stata·spss
liliangcsdn1 天前
Leiden社区发现算法的学习和示例
学习·数据分析·知识图谱
云天徽上1 天前
【数据可视化-107】2025年1-7月全国出口总额Top 10省市数据分析:用Python和Pyecharts打造炫酷可视化大屏
开发语言·python·信息可视化·数据挖掘·数据分析·pyecharts