Flink-容错机制checkpoint

检查点的保存

周期性的触发保存

"随时存档"确实恢复起来方便,可是需要我们不停地做存档操作。如果每处理一条数据就进行检查点的保存,当大量数据同时到来时,就会耗费很多资源来频繁做检查点,数据处理的速度就会受到影响。所以在Flink中,检查点的保存是周期性触发的,间隔时间可以进行设置。

保存的时间点

我们应该在所有任务(算子)都恰好处理完一个相同的输入数据的时候,将它们的状态保存下来。

这样做可以实现一个数据被所有任务(算子)完整地处理完,状态得到了保存。

如果出现故障,我们恢复到之前保存的状态,故障时正在处理的所有数据都需要重新处理;我们只需要让源(source)任务向数据源重新提交偏移量、请求重放数据就可以了。当然这需要源任务可以把偏移量作为算子状态保存下来,而且外部数据源能够重置偏移量;kafka就是满足这些要求的一个最好的例子。

检查点算法

在Flink中,采用了基于Chandy-Lamport算法的分布式快照,可以在不暂停整体流处理的前提下,将状态备份保存到检查点。

检查点分界线(Barrier)

借鉴水位线的设计,在数据流中插入一个特殊的数据结构,专门用来表示触发检查点保存的时间点。收到保存检查点的指令后,Source任务可以在当前数据流中插入这个结构;之后的所有任务只要遇到它就开始对状态做持久化快照保存。由于数据流是保持顺序依次处理的,因此遇到这个标识就代表之前的数据都处理完了,可以保存一个检查点;而在它之后的数据,引起的状态改变就不会体现在这个检查点中,而需要保存到下一个检查点。

这种特殊的数据形式,把一条流上的数据按照不同的检查点分隔开,所以就叫做检查点的"分界线"(Checkpoint Barrier)。

分布式快照算法(Barrier对齐的精准一次)

具体实现上,Flink使用了Chandy-Lamport算法的一种变体,被称为"异步分界线快照"算法。算法的核心就是两个原则:

  • 当上游任务向多个并行下游任务发送barrier时,需要广播出去;
  • 而当多个上游任务向同一个下游任务传递分界线时,需要在下游任务执行"分界线对齐"操作,也就是需要等到所有并行分区的barrier都到齐,才可以开始状态的保存。

    触发检查点保存
    (1)触发检查点:JobManager向Source发送Barrier;
    (2)Barrier发送:向下游广播发送;
    (3)Barrier对齐:下游需要收到上游所有并行度传递过来的Barrier才做自身状态的保存;
    (4)状态保存:有状态的算子将状态保存至持久化。
    (5)先处理缓存数据,然后正常继续处理
    完成检查点保存之后,任务就可以继续正常处理数据了。这时如果有等待分界线对齐时缓存的数据,需要先做处理;然后再按照顺序依次处理新到的数据。当JobManager收到所有任务成功保存状态的信息,就可以确认当前检查点成功保存。之后遇到故障就可以从这里恢复了。
    (补充)由于分界线对齐要求先到达的分区做缓存等待,一定程度上会影响处理的速度;当出现背压时,下游任务会堆积大量的缓冲数据,检查点可能需要很久才可以保存完毕。为了应对这种场景,Barrier对齐中提供了至少一次语义以及Flink 1.11之后提供了不对齐的检查点保存方式,可以将未处理的缓冲数据也保存进检查点。这样,当我们遇到一个分区barrier时就不需等待对齐,而是可以直接启动状态的保存了。

分布式快照算法(Barrier对齐的至少一次)

分布式快照算法(非Barrier对齐的精准一次)

相关推荐
AI数据皮皮侠8 分钟前
中国博物馆数据
大数据·人工智能·python·深度学习·机器学习
JAVA学习通36 分钟前
SpringOJ竞赛项目----组件ElasticSearch
大数据·elasticsearch·搜索引擎
武子康41 分钟前
大数据-129 - Flink CEP详解:实时流式复杂事件处理(Complex Event Processing)全解析
大数据·后端·flink
视***间1 小时前
视程空间Pandora:终端算力破晓,赋能边缘计算未
大数据·人工智能·边缘计算·ai算力·视程空间
fredinators2 小时前
数据库专家
大数据·数据库
Q26433650232 小时前
【有源码】基于Python与Spark的火锅店数据可视化分析系统-基于机器学习的火锅店综合竞争力评估与可视化分析-基于用户画像聚类的火锅店市场细分与可视化研究
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
潘达斯奈基~2 小时前
spark性能优化1:通过依赖关系重组优化Spark性能:宽窄依赖集中处理实践
大数据·性能优化·spark
JosieBook3 小时前
【数据库】时序数据库选型指南:在大数据与工业4.0时代,为何 Apache IoTDB 成为智慧之选?
大数据·数据库·时序数据库
熊猫钓鱼>_>3 小时前
AI驱动的专业报告撰写:从信息整合到洞察生成的全新范式
大数据·人工智能·百度
TDengine (老段)11 小时前
TDengine 数学函数 DEGRESS 用户手册
大数据·数据库·sql·物联网·时序数据库·iot·tdengine