[足式机器人]Part4 南科大高等机器人控制课 Ch09 Dynamics of Open Chains

本文仅供学习使用
本文参考:
B站:CLEAR_LAB
笔者带更新-运动学
课程主讲教师:
Prof. Wei Zhang

南科大高等机器人控制课 Ch09 Dynamics of Open Chains

  • [1. Introduction](#1. Introduction)
    • [1.1 From Single Rigid Body to Open Chains](#1.1 From Single Rigid Body to Open Chains)
    • [1.2 Preview of Open-Chain Dynamics](#1.2 Preview of Open-Chain Dynamics)
    • [1.3 Lagrangian VS. Newton-Euler Methods](#1.3 Lagrangian VS. Newton-Euler Methods)
  • [2. Inverse Dynamics: Recursive Newton-Euler Algorithm(RNEA)](#2. Inverse Dynamics: Recursive Newton-Euler Algorithm(RNEA))
    • [2.1 RNEA: Notations](#2.1 RNEA: Notations)
      • [2.1.1 RNEA: Velocity and Accel. Propagation(Forward Pass)](#2.1.1 RNEA: Velocity and Accel. Propagation(Forward Pass))
    • [2.1.2 RNEA: Force Propagation(Backward Pass)](#2.1.2 RNEA: Force Propagation(Backward Pass))
    • [2.1.3 Recursive Newton-Euler Algorithm](#2.1.3 Recursive Newton-Euler Algorithm)
  • [3. Analytical Form of the Dynamics Model](#3. Analytical Form of the Dynamics Model)
    • [3.1 Structures in Dynamic Equation](#3.1 Structures in Dynamic Equation)
    • [3.2 Properties of Dynamics Model of Multi-Body Systems](#3.2 Properties of Dynamics Model of Multi-Body Systems)
  • [4. Forward Dynamics Algorithms](#4. Forward Dynamics Algorithms)
    • [4.1 Forward Dynamics Problem](#4.1 Forward Dynamics Problem)
    • [4.2 Caculations of h and M](#4.2 Caculations of h and M)
    • [4.3 Forward Dynamics Algorithms](#4.3 Forward Dynamics Algorithms)
    • [4.4 More Discussions](#4.4 More Discussions)

1. Introduction

1.1 From Single Rigid Body to Open Chains

  • Recall Newton-Euler Equation for a single rigid body:
    F = d d t H = I A + V ~ ∗ I V \mathcal{F} =\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} =\mathcal{I} \mathcal{A} +\tilde{\mathcal{V}}^*\mathcal{I} \mathcal{V} F=dtdH=IA+V~∗IV
  • Open chains consists of multiple rigid links connected through joints
  • Dynamics of adjacent links are coupled
  • This lecture: model multi-body dynamics subject to joint constrainsts.

1.2 Preview of Open-Chain Dynamics

  • Equations of Motion are a set of 2nd-order differential equations:
    τ = M ( θ ) θ ¨ + c ( θ , θ ˙ ) \tau =M\left( \theta \right) \ddot{\theta}+c\left( \theta ,\dot{\theta} \right) τ=M(θ)θ¨+c(θ,θ˙)
    θ ∈ R n \theta \in \mathbb{R} ^n θ∈Rn : vector of joint variables ;
    τ ∈ R n \tau \in \mathbb{R} ^n τ∈Rn : vector of joint forces/torques(与之前的符号不一致);
    M ( θ ) ∈ R n × n M\left( \theta \right) \in \mathbb{R} ^{n\times n} M(θ)∈Rn×n : mass matrix
    c ( θ , θ ˙ ) ∈ R n c\left( \theta ,\dot{\theta} \right) \in \mathbb{R} ^n c(θ,θ˙)∈Rn : forces that lump together centripetal, Coriolis, gravity, friction terms, and torques induced by external forces. These terms depends on θ \theta θ and θ ˙ \dot{\theta} θ˙

  • Forward dynamics : Determine accecleration θ ¨ \ddot{\theta} θ¨ given the state ( θ , θ ˙ ) \left( \theta ,\dot{\theta} \right) (θ,θ˙) and the joint forces/torques
    θ ¨ ← F D ( τ , θ , θ ˙ , F e x t ) \ddot{\theta}\gets FD\left( \tau ,\theta ,\dot{\theta},\mathcal{F} _{\mathrm{ext}} \right) θ¨←FD(τ,θ,θ˙,Fext)

  • Inverse dynamics : Finding torques/forces given state ( θ , θ ˙ ) \left( \theta ,\dot{\theta} \right) (θ,θ˙) and desired acceleration θ ¨ \ddot{\theta} θ¨ (Given desired motion, find the required torque to generate the desired motion)
    τ ← I D ( θ , θ ˙ , θ ¨ , F e x t ) \tau \gets ID\left( \theta ,\dot{\theta},\ddot{\theta},\mathcal{F} _{\mathrm{ext}} \right) τ←ID(θ,θ˙,θ¨,Fext)

1.3 Lagrangian VS. Newton-Euler Methods

  • There are typically two ways to derive the equation of motion for an open-chain robot: Lagrangian method and Newton-Euler method

Lagrangian Formulation : Energy-based method ; Dynamic equations in closed form ; Often used for study of dynamic properties and analysis of control methods

Newton-Euler Formulation : Balance of forces/torques ; Dynamic equations in numeric/recuisive form ; Often used for numerical solution of forward/inverse dynamics

We focus on Newton-Euler Formulation

2. Inverse Dynamics: Recursive Newton-Euler Algorithm(RNEA)

2.1 RNEA: Notations

  • Number bodies : 1 to N N N

    Parents : p ( i ) : p ( 3 ) = { 2 } , p ( 4 ) = { 2 } p\left( i \right) :p\left( 3 \right) =\left\{ 2 \right\} ,p\left( 4 \right) =\left\{ 2 \right\} p(i):p(3)={2},p(4)={2}

    Children : c ( i ) : c ( 2 ) = { 3 , 4 } , c ( 1 ) = { 2 } c\left( i \right) :c\left( 2 \right) =\left\{ 3,4 \right\} ,c\left( 1 \right) =\left\{ 2 \right\} c(i):c(2)={3,4},c(1)={2}

  • Joint i i i connects p ( i ) p\left( i \right) p(i) to i i i

  • Frame { i } \left\{ i \right\} {i} attached to body i i i at the joint

  • S i \mathcal{S} _{\mathrm{i}} Si : Spatial velocity (screw axis) of joint i i i

  • V i \mathcal{V} _{\mathrm{i}} Vi and A i \mathcal{A} _{\mathrm{i}} Ai : spatial velocity and acceleration of body i i i

  • F i \mathcal{F} _{\mathrm{i}} Fi : force(wrench) onto body i i i from body p ( i ) p\left( i \right) p(i)

  • Note : By default, all vectors ( S i , V i , F i ) \left( \mathcal{S} _{\mathrm{i}},\mathcal{V} _{\mathrm{i}},\mathcal{F} _{\mathrm{i}} \right) (Si,Vi,Fi) are expressed in local frame { i } \left\{ i \right\} {i}

2.1.1 RNEA: Velocity and Accel. Propagation(Forward Pass)

Goal: Given joint velocity θ ˙ \dot{\theta} θ˙ and acceleration θ ¨ \ddot{\theta} θ¨ , compute the body spatial velocity V i \mathcal{V} _{\mathrm{i}} Vi and spatial acceleration A i \mathcal{A} _{\mathrm{i}} Ai

  • Velocity Propagation : V i i = [ X p ( i ) i ] V p ( i ) p ( i ) + S i i θ ˙ i \mathcal{V} {\mathrm{i}}^{i}=\left[ X{\mathrm{p}\left( i \right)}^{i} \right] \mathcal{V} _{\mathrm{p}\left( i \right)}^{p\left( i \right)}+\mathcal{S} {\mathrm{i}}^{i}\dot{\theta}{\mathrm{i}} Vii=[Xp(i)i]Vp(i)p(i)+Siiθ˙i
  • Accel Propagation : A i i = [ X p ( i ) i ] A p ( i ) p ( i ) + V ~ i i S i i θ ˙ i + S i i θ ¨ i \mathcal{A} {\mathrm{i}}^{i}=\left[ X{\mathrm{p}\left( i \right)}^{i} \right] \mathcal{A} {\mathrm{p}\left( i \right)}^{p\left( i \right)}+\tilde{\mathcal{V}}{\mathrm{i}}^{i}\mathcal{S} {\mathrm{i}}^{i}\dot{\theta}{\mathrm{i}}+\mathcal{S} {\mathrm{i}}^{i}\ddot{\theta}{\mathrm{i}} Aii=[Xp(i)i]Ap(i)p(i)+V~iiSiiθ˙i+Siiθ¨i

从机架侧开始计算

2.1.2 RNEA: Force Propagation(Backward Pass)

Goal : Given body spatial velocity V i \mathcal{V} _{\mathrm{i}} Vi amd spatial acceleration A i \mathcal{A} _{\mathrm{i}} Ai, compute the joint wrench F i \mathcal{F} _{\mathrm{i}} Fi and the corresponding torque τ i = S i T F i \tau _{\mathrm{i}}={\mathcal{S} _{\mathrm{i}}}^{\mathrm{T}}\mathcal{F} _{\mathrm{i}} τi=SiTFi

{ F i = I i A i + V ~ i ∗ I i V i + ∑ j ∈ c ( i ) F j τ i = S i T F i \begin{cases} \mathcal{F} _{\mathrm{i}}=\mathcal{I} _{\mathrm{i}}\mathcal{A} {\mathrm{i}}+{\tilde{\mathcal{V}}{\mathrm{i}}}^*\mathcal{I} _{\mathrm{i}}\mathcal{V} {\mathrm{i}}+\sum\nolimits{j\in c\left( i \right)}^{}{\mathcal{F} _{\mathrm{j}}}\\ \tau _{\mathrm{i}}={\mathcal{S} _{\mathrm{i}}}^{\mathrm{T}}\mathcal{F} _{\mathrm{i}}\\ \end{cases} {Fi=IiAi+V~i∗IiVi+∑j∈c(i)Fjτi=SiTFi

从末端执行构件处开始计算:

  • Body 4:
    F 4 + F G 4 = I 4 A 4 + V ~ 4 ∗ I 4 V 4 ⇒ F 4 = I 4 A 4 + V ~ 4 ∗ I 4 V 4 − F G 4 , F G 4 = I 4 A G 4 = I 4 [ X O 4 ] A G O \mathcal{F} _4+\mathcal{F} _{\mathrm{G}4}=\mathcal{I} _4\mathcal{A} _4+{\tilde{\mathcal{V}}_4}^*\mathcal{I} _4\mathcal{V} _4 \\ \Rightarrow \mathcal{F} _4=\mathcal{I} _4\mathcal{A} _4+{\tilde{\mathcal{V}}_4}^*\mathcal{I} _4\mathcal{V} _4-\mathcal{F} _{\mathrm{G}4},\mathcal{F} _{\mathrm{G}4}=\mathcal{I} _4\mathcal{A} _{\mathrm{G}}^{4}=\mathcal{I} 4\left[ X{\mathrm{O}}^{4} \right] \mathcal{A} _{\mathrm{G}}^{O} F4+FG4=I4A4+V~4∗I4V4⇒F4=I4A4+V~4∗I4V4−FG4,FG4=I4AG4=I4[XO4]AGO
    τ 4 = S 4 T F 4 \tau _4={\mathcal{S} _4}^{\mathrm{T}}\mathcal{F} _4 τ4=S4TF4
  • Body 2:
    F 2 = I 2 A 2 + V ~ 2 ∗ I 2 V 2 + F 4 + F 3 − F G 2 , F G 2 = I 2 [ X O 2 ] A G 2 O τ 2 = S 2 T F 2 \mathcal{F} _2=\mathcal{I} _2\mathcal{A} _2+{\tilde{\mathcal{V}}_2}^*\mathcal{I} _2\mathcal{V} _2+\mathcal{F} _4+\mathcal{F} _3-\mathcal{F} _{\mathrm{G}2},\mathcal{F} _{\mathrm{G}2}=\mathcal{I} 2\left[ X{\mathrm{O}}^{2} \right] \mathcal{A} _{\mathrm{G}2}^{O} \\ \tau _2={\mathcal{S} _2}^{\mathrm{T}}\mathcal{F} _2 F2=I2A2+V~2∗I2V2+F4+F3−FG2,FG2=I2[XO2]AG2Oτ2=S2TF2

2.1.3 Recursive Newton-Euler Algorithm

τ ← R N E A ( θ , θ ˙ , θ ¨ , F e x t ; M o d e l ) \tau \gets RNEA\left( \theta ,\dot{\theta},\ddot{\theta},\mathcal{F} _{\mathrm{ext}};Model \right) τ←RNEA(θ,θ˙,θ¨,Fext;Model)

Initialize : V 0 = 0 , A 0 = − A G \mathcal{V} _0=0,\mathcal{A} _0=-\mathcal{A} _{\mathrm{G}} V0=0,A0=−AG (without gravity "trick" modify F i = I i A i + V ~ i ∗ I i V i − I i [ X O i ] A G i O \mathcal{F} _{\mathrm{i}}=\mathcal{I} _{\mathrm{i}}\mathcal{A} {\mathrm{i}}+{\tilde{\mathcal{V}}{\mathrm{i}}}^*\mathcal{I} _{\mathrm{i}}\mathcal{V} _{\mathrm{i}}-\mathcal{I} {\mathrm{i}}\left[ X{\mathrm{O}}^{i} \right] \mathcal{A} _{\mathrm{Gi}}^{O} Fi=IiAi+V~i∗IiVi−Ii[XOi]AGiO)

  • Forward pass : For i = 1 i=1 i=1 to N N N
    V i i = [ X p ( i ) i ] V p ( i ) p ( i ) + S i i θ ˙ i \mathcal{V} {\mathrm{i}}^{i}=\left[ X{\mathrm{p}\left( i \right)}^{i} \right] \mathcal{V} _{\mathrm{p}\left( i \right)}^{p\left( i \right)}+\mathcal{S} {\mathrm{i}}^{i}\dot{\theta}{\mathrm{i}} Vii=[Xp(i)i]Vp(i)p(i)+Siiθ˙i
    A i i = [ X p ( i ) i ] A p ( i ) p ( i ) + V ~ i i S i i θ ˙ i + S i i θ ¨ i \mathcal{A} {\mathrm{i}}^{i}=\left[ X{\mathrm{p}\left( i \right)}^{i} \right] \mathcal{A} {\mathrm{p}\left( i \right)}^{p\left( i \right)}+\tilde{\mathcal{V}}{\mathrm{i}}^{i}\mathcal{S} {\mathrm{i}}^{i}\dot{\theta}{\mathrm{i}}+\mathcal{S} {\mathrm{i}}^{i}\ddot{\theta}{\mathrm{i}} Aii=[Xp(i)i]Ap(i)p(i)+V~iiSiiθ˙i+Siiθ¨i
    F i = I i A i + V ~ i ∗ I i V i \mathcal{F} _{\mathrm{i}}=\mathcal{I} _{\mathrm{i}}\mathcal{A} {\mathrm{i}}+{\tilde{\mathcal{V}}{\mathrm{i}}}^*\mathcal{I} _{\mathrm{i}}\mathcal{V} _{\mathrm{i}} Fi=IiAi+V~i∗IiVi
  • Backward pass : For i = N i=N i=N to 1
    τ i = S i T F i \tau _{\mathrm{i}}={\mathcal{S} _{\mathrm{i}}}^{\mathrm{T}}\mathcal{F} _{\mathrm{i}} τi=SiTFi
    F p ( i ) = F p ( i ) + [ X i p ( i ) ] F i \mathcal{F} _{\mathrm{p}\left( i \right)}=\mathcal{F} {\mathrm{p}\left( i \right)}+\left[ X{\mathrm{i}}^{p\left( i \right)} \right] \mathcal{F} _{\mathrm{i}} Fp(i)=Fp(i)+[Xip(i)]Fi

3. Analytical Form of the Dynamics Model

3.1 Structures in Dynamic Equation

Jacobian of each link(body) : J 1 , ⋯   , J 4 J_1,\cdots ,J_4 J1,⋯,J4
J i J_{\mathrm{i}} Ji : denote the Jacobian of body(Link) i i i , i.e. V i = J i θ ˙ = [ J i 1 J i 2 J i 3 J i 4 ] [ θ ˙ 1 θ ˙ 2 θ ˙ 3 θ ˙ 4 ] \mathcal{V} {\mathrm{i}}=J{\mathrm{i}}\dot{\theta}=\left[ \begin{matrix} J_{\mathrm{i}1}& J_{\mathrm{i}2}& J_{\mathrm{i}3}& J_{\mathrm{i}4}\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\theta}_1\\ \dot{\theta}_2\\ \dot{\theta}_3\\ \dot{\theta}_4\\ \end{array} \right] Vi=Jiθ˙=[Ji1Ji2Ji3Ji4] θ˙1θ˙2θ˙3θ˙4

e.g. V 1 = J 1 θ ˙ = [ δ 11 S 1 δ 12 S 2 δ 13 S 3 δ 14 S 4 ] [ θ ˙ 1 θ ˙ 2 θ ˙ 3 θ ˙ 4 ] = [ S 1 0 0 0 ] [ θ ˙ 1 θ ˙ 2 θ ˙ 3 θ ˙ 4 ] δ i j = { 1 , i f    j o i n t    j s u p p o r t    b o d y    i 0 , o t h e r w i s e \mathcal{V} _1=J_1\dot{\theta}=\left[ \begin{matrix} \delta _{11}\mathcal{S} _1& \delta _{12}\mathcal{S} _2& \delta _{13}\mathcal{S} _3& \delta _{14}\mathcal{S} _4\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\theta}_1\\ \dot{\theta}_2\\ \dot{\theta}_3\\ \dot{\theta}_4\\ \end{array} \right] =\left[ \begin{matrix} \mathcal{S} _1& 0& 0& 0\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\theta}_1\\ \dot{\theta}_2\\ \dot{\theta}_3\\ \dot{\theta}_4\\ \end{array} \right] \\ \delta _{\mathrm{ij}}=\begin{cases} 1, if\,\,joint\,\,\mathrm{j} support\,\,body\,\,\mathrm{i}\\ 0, otherwise\\ \end{cases} V1=J1θ˙=[δ11S1δ12S2δ13S3δ14S4] θ˙1θ˙2θ˙3θ˙4 =[S1000] θ˙1θ˙2θ˙3θ˙4 δij={1,ifjointjsupportbodyi0,otherwise

V 2 = J 2 θ ˙ = [ S 1 S 2 0 0 ] θ ˙ ⇒ V 2 2 = [ [ X 1 2 ] S 2 1 S 2 2 0 0 ] θ ˙ \mathcal{V} _2=J_2\dot{\theta}=\left[ \begin{matrix} \mathcal{S} _1& \mathcal{S} _2& 0& 0\\ \end{matrix} \right] \dot{\theta}\Rightarrow \mathcal{V} {2}^{2}=\left[ \left[ X{1}^{2} \right] \begin{matrix} \mathcal{S} _{2}^{1}& \mathcal{S} _{2}^{2}& 0& 0\\ \end{matrix} \right] \dot{\theta} V2=J2θ˙=[S1S200]θ˙⇒V22=[[X12]S21S2200]θ˙

see the two-body example:

  1. Forward pass :
    V 1 = S 1 θ ˙ 1 \mathcal{V} _1=\mathcal{S} _1\dot{\theta}_1 V1=S1θ˙1 , V 2 2 = [ [ X 1 2 ] S 2 1 S 2 2 ] [ θ ˙ 1 θ ˙ 2 ] \mathcal{V} {2}^{2}=\left[ \begin{matrix} \left[ X{1}^{2} \right] \mathcal{S} _{2}^{1}& \mathcal{S} _{2}^{2}\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\theta}_1\\ \dot{\theta}_2\\ \end{array} \right] V22=[[X12]S21S22][θ˙1θ˙2]
    A 1 , A 2 \mathcal{A} _1, \mathcal{A} _2 A1,A2
  2. Backward pass :
    F 2 = I 2 A 2 + V ~ 2 ∗ I 2 V 2 − F 2 e x t − F 2 G F 1 = I 1 A 1 + V ~ 1 ∗ I 1 V 1 − F 1 e x t − F 1 G + [ X 2 1 ] ( I 2 A 2 + V ~ 2 ∗ I 2 V 2 − F 2 e x t − F 2 G ) τ 2 = S 2 T F 2 τ 1 = S 1 T F 1 \mathcal{F} _2=\mathcal{I} _2\mathcal{A} _2+{\tilde{\mathcal{V}}_2}^*\mathcal{I} _2\mathcal{V} _2-\mathcal{F} _{2\mathrm{ext}}-\mathcal{F} _{2\mathrm{G}} \\ \mathcal{F} _1=\mathcal{I} _1\mathcal{A} _1+{\tilde{\mathcal{V}}_1}^*\mathcal{I} _1\mathcal{V} _1-\mathcal{F} _{1\mathrm{ext}}-\mathcal{F} {1\mathrm{G}}+\left[ X{2}^{1} \right] \left( \mathcal{I} _2\mathcal{A} _2+{\tilde{\mathcal{V}}_2}^*\mathcal{I} _2\mathcal{V} _2-\mathcal{F} _{2\mathrm{ext}}-\mathcal{F} _{2\mathrm{G}} \right) \\ \tau _2={\mathcal{S} _2}^{\mathrm{T}}\mathcal{F} _2 \\ \tau _1={\mathcal{S} _1}^{\mathrm{T}}\mathcal{F} _1 F2=I2A2+V~2∗I2V2−F2ext−F2GF1=I1A1+V~1∗I1V1−F1ext−F1G+[X21](I2A2+V~2∗I2V2−F2ext−F2G)τ2=S2TF2τ1=S1TF1

Overall torque expression :
τ 1 = S 1 T F 1 = S 1 T ( I 1 A 1 + V ~ 1 ∗ I 1 V 1 − F 1 e x t − F 1 G + [ X 2 1 ] ( I 2 A 2 + V ~ 2 ∗ I 2 V 2 − F 2 e x t − F 2 G ) ) = S 1 T ( I 1 A 1 + V ~ 1 ∗ I 1 V 1 ) + ( [ X 1 2 ] S 1 ) T ( I 2 A 2 + V ~ 2 ∗ I 2 V 2 ) − S 1 T ( F 1 e x t + F 1 G + [ X 2 1 ] ( F 2 e x t + F 2 G ) ) \tau _1={\mathcal{S} _1}^{\mathrm{T}}\mathcal{F} _1={\mathcal{S} _1}^{\mathrm{T}}\left( \mathcal{I} _1\mathcal{A} _1+{\tilde{\mathcal{V}}_1}^*\mathcal{I} _1\mathcal{V} _1-\mathcal{F} _{1\mathrm{ext}}-\mathcal{F} {1\mathrm{G}}+\left[ X{2}^{1} \right] \left( \mathcal{I} _2\mathcal{A} _2+{\tilde{\mathcal{V}}_2}^*\mathcal{I} _2\mathcal{V} _2-\mathcal{F} _{2\mathrm{ext}}-\mathcal{F} _{2\mathrm{G}} \right) \right) \\ ={\mathcal{S} _1}^{\mathrm{T}}\left( \mathcal{I} _1\mathcal{A} _1+{\tilde{\mathcal{V}}_1}^*\mathcal{I} _1\mathcal{V} 1 \right) +\left( \left[ X{1}^{2} \right] \mathcal{S} _1 \right) ^{\mathrm{T}}\left( \mathcal{I} _2\mathcal{A} _2+{\tilde{\mathcal{V}}_2}^*\mathcal{I} _2\mathcal{V} _2 \right) -{\mathcal{S} _1}^{\mathrm{T}}\left( \mathcal{F} _{1\mathrm{ext}}+\mathcal{F} {1\mathrm{G}}+\left[ X{2}^{1} \right] \left( \mathcal{F} _{2\mathrm{ext}}+\mathcal{F} _{2\mathrm{G}} \right) \right) τ1=S1TF1=S1T(I1A1+V~1∗I1V1−F1ext−F1G+[X21](I2A2+V~2∗I2V2−F2ext−F2G))=S1T(I1A1+V~1∗I1V1)+([X12]S1)T(I2A2+V~2∗I2V2)−S1T(F1ext+F1G+[X21](F2ext+F2G))

due to motion of body 1 and 2 and external force of body 1 and 2

τ = [ τ 1 τ 2 ] = [ S 1 T ( I 1 A 1 + V ~ 1 ∗ I 1 V 1 ) + ( [ X 1 2 ] S 1 ) T ( I 2 A 2 + V ~ 2 ∗ I 2 V 2 ) − S 1 T ( F 1 e x t + F 1 G + [ X 2 1 ] ( F 2 e x t + F 2 G ) ) S 2 T ( I 2 A 2 + V ~ 2 ∗ I 2 V 2 − F 2 e x t − F 2 G ) ] = [ S 1 T 0 ] ( I 1 A 1 + V ~ 1 ∗ I 1 V 1 − F 1 e x t − F 1 G ) + [ ( [ X 1 2 ] S 1 ) T S 2 T ] ( I 2 A 2 + V ~ 2 ∗ I 2 V 2 − F 2 e x t − F 2 G ) = J 1 T ( I 1 A 1 + V ~ 1 ∗ I 1 V 1 − F 1 e x t − F 1 G ) + J 2 T ( I 2 A 2 + V ~ 2 ∗ I 2 V 2 − F 2 e x t − F 2 G ) \tau =\left[ \begin{array}{c} \tau _1\\ \tau _2\\ \end{array} \right] =\left[ \begin{array}{c} {\mathcal{S} _1}^{\mathrm{T}}\left( \mathcal{I} _1\mathcal{A} _1+{\tilde{\mathcal{V}}_1}^*\mathcal{I} _1\mathcal{V} 1 \right) +\left( \left[ X{1}^{2} \right] \mathcal{S} _1 \right) ^{\mathrm{T}}\left( \mathcal{I} _2\mathcal{A} _2+{\tilde{\mathcal{V}}_2}^*\mathcal{I} _2\mathcal{V} _2 \right) -{\mathcal{S} _1}^{\mathrm{T}}\left( \mathcal{F} _{1\mathrm{ext}}+\mathcal{F} {1\mathrm{G}}+\left[ X{2}^{1} \right] \left( \mathcal{F} _{2\mathrm{ext}}+\mathcal{F} _{2\mathrm{G}} \right) \right)\\ {\mathcal{S} _2}^{\mathrm{T}}\left( \mathcal{I} _2\mathcal{A} _2+{\tilde{\mathcal{V}}_2}^*\mathcal{I} _2\mathcal{V} _2-\mathcal{F} _{2\mathrm{ext}}-\mathcal{F} _{2\mathrm{G}} \right)\\ \end{array} \right] \\ =\left[ \begin{array}{c} {\mathcal{S} _1}^{\mathrm{T}}\\ 0\\ \end{array} \right] \left( \mathcal{I} _1\mathcal{A} _1+{\tilde{\mathcal{V}}_1}^*\mathcal{I} _1\mathcal{V} _1-\mathcal{F} _{1\mathrm{ext}}-\mathcal{F} {1\mathrm{G}} \right) +\left[ \begin{array}{c} \left( \left[ X{1}^{2} \right] \mathcal{S} _1 \right) ^{\mathrm{T}}\\ {\mathcal{S} _2}^{\mathrm{T}}\\ \end{array} \right] \left( \mathcal{I} _2\mathcal{A} _2+{\tilde{\mathcal{V}}_2}^*\mathcal{I} _2\mathcal{V} _2-\mathcal{F} _{2\mathrm{ext}}-\mathcal{F} _{2\mathrm{G}} \right) \\ ={J_1}^{\mathrm{T}}\left( \mathcal{I} _1\mathcal{A} _1+{\tilde{\mathcal{V}}_1}^*\mathcal{I} _1\mathcal{V} _1-\mathcal{F} _{1\mathrm{ext}}-\mathcal{F} _{1\mathrm{G}} \right) +{J_2}^{\mathrm{T}}\left( \mathcal{I} _2\mathcal{A} _2+{\tilde{\mathcal{V}}_2}^*\mathcal{I} _2\mathcal{V} _2-\mathcal{F} _{2\mathrm{ext}}-\mathcal{F} _{2\mathrm{G}} \right) τ=[τ1τ2]= S1T(I1A1+V~1∗I1V1)+([X12]S1)T(I2A2+V~2∗I2V2)−S1T(F1ext+F1G+[X21](F2ext+F2G))S2T(I2A2+V~2∗I2V2−F2ext−F2G) =[S1T0](I1A1+V~1∗I1V1−F1ext−F1G)+[([X12]S1)TS2T](I2A2+V~2∗I2V2−F2ext−F2G)=J1T(I1A1+V~1∗I1V1−F1ext−F1G)+J2T(I2A2+V~2∗I2V2−F2ext−F2G)

Overall : in general with N-links / Joints

τ = ∑ i = 1 N J i T ( I i A i + V ~ i ∗ I i V i − F i e x t − F i G ) \tau =\sum_{i=1}^N{{J_{\mathrm{i}}}^{\mathrm{T}}\left( \mathcal{I} _{\mathrm{i}}\mathcal{A} {\mathrm{i}}+{\tilde{\mathcal{V}}{\mathrm{i}}}^*\mathcal{I} _{\mathrm{i}}\mathcal{V} _{\mathrm{i}}-\mathcal{F} _{\mathrm{iext}}-\mathcal{F} _{\mathrm{iG}} \right)} τ=i=1∑NJiT(IiAi+V~i∗IiVi−Fiext−FiG)

V i = J i θ ˙ A i = V ˙ i = ( J ˙ i θ ˙ + J i θ ¨ + V ~ i J i θ ˙ ) \mathcal{V} {\mathrm{i}}=J{\mathrm{i}}\dot{\theta} \\ \mathcal{A} {\mathrm{i}}=\dot{\mathcal{V}}{\mathrm{i}}=\left( \dot{J}{\mathrm{i}}\dot{\theta}+J{\mathrm{i}}\ddot{\theta}+\tilde{\mathcal{V}}{\mathrm{i}}J{\mathrm{i}}\dot{\theta} \right) Vi=Jiθ˙Ai=V˙i=(J˙iθ˙+Jiθ¨+V~iJiθ˙)

上式看上去难以理解,尤其是加速度旋量,本质上是因为在构件坐标系下的求导,相当于需要对运动基向量求导所产生的加速度

带入可得:
τ = ∑ i = 1 N J i T I i J i θ ¨ + ∑ i = 1 N J i T ( I i J ˙ i + I i V ~ i J i + V ~ i ∗ I i J i ) θ ˙ \tau =\sum_{i=1}^N{{J_{\mathrm{i}}}^{\mathrm{T}}\mathcal{I} {\mathrm{i}}J{\mathrm{i}}}\ddot{\theta}+\sum_{i=1}^N{{J_{\mathrm{i}}}^{\mathrm{T}}\left( \mathcal{I} {\mathrm{i}}\dot{J}{\mathrm{i}}+\mathcal{I} {\mathrm{i}}\tilde{\mathcal{V}}{\mathrm{i}}J_{\mathrm{i}}+{\tilde{\mathcal{V}}{\mathrm{i}}}^*\mathcal{I} {\mathrm{i}}J{\mathrm{i}} \right)}\dot{\theta} τ=i=1∑NJiTIiJiθ¨+i=1∑NJiT(IiJ˙i+IiV~iJi+V~i∗IiJi)θ˙
∑ i = 1 N J i T I i J i = M ( θ ) , ∑ i = 1 N J i T ( I i J ˙ i + I i V ~ i J i + V ~ i ∗ I i J i ) = c ( θ , θ ˙ ) \sum
{i=1}^N{{J_{\mathrm{i}}}^{\mathrm{T}}\mathcal{I} {\mathrm{i}}J{\mathrm{i}}}=M\left( \theta \right) ,\sum_{i=1}^N{{J_{\mathrm{i}}}^{\mathrm{T}}\left( \mathcal{I} {\mathrm{i}}\dot{J}{\mathrm{i}}+\mathcal{I} {\mathrm{i}}\tilde{\mathcal{V}}{\mathrm{i}}J_{\mathrm{i}}+{\tilde{\mathcal{V}}{\mathrm{i}}}^*\mathcal{I} {\mathrm{i}}J{\mathrm{i}} \right)}=c\left( \theta ,\dot{\theta} \right) ∑i=1NJiTIiJi=M(θ),∑i=1NJiT(IiJ˙i+IiV~iJi+V~i∗IiJi)=c(θ,θ˙) , τ G = ∑ i = 1 N J i T I i [ X O i ] ( − A i G O ) \tau G=\sum{i=1}^N{{J{\mathrm{i}}}^{\mathrm{T}}\mathcal{I} {\mathrm{i}}\left[ X{\mathrm{O}}^{i} \right]}\left( -\mathcal{A} _{\mathrm{iG}}^{O} \right) τG=∑i=1NJiTIi[XOi](−AiGO)

最终理解: τ = M ( θ ) θ ¨ + c ( θ , θ ˙ ) θ ˙ + τ G + J T ( θ ) F e x t \tau =M\left( \theta \right) \ddot{\theta}+c\left( \theta ,\dot{\theta} \right) \dot{\theta}+\tau _G+J^{\mathrm{T}}\left( \theta \right) \mathcal{F} _{\mathrm{ext}} τ=M(θ)θ¨+c(θ,θ˙)θ˙+τG+JT(θ)Fext
F e x t \mathcal{F} _{\mathrm{ext}} Fext : applied from the body to environment

回顾:
J i J_{\mathrm{i}} Ji : body/link i Jacobian , V i ∣ 6 × 1 = J i ∣ 6 × n θ ˙ ∣ n × 1 \left. \mathcal{V} {\mathrm{i}} \right|{6\times 1}=\left. J_{\mathrm{i}} \right|{6\times \mathrm{n}}\left. \dot{\theta} \right|{\mathrm{n}\times 1} Vi∣6×1=Ji∣6×nθ˙ n×1
τ ∈ R n \tau \in \mathbb{R} ^n τ∈Rn , τ \tau τ play two major roles :

  1. generate motion
  2. generate force/torque

3.2 Properties of Dynamics Model of Multi-Body Systems

Only cpnsider body 2's effect

4. Forward Dynamics Algorithms

4.1 Forward Dynamics Problem

τ = M ( θ ) θ ¨ + c ( θ , θ ˙ ) θ ˙ + τ G + J T ( θ ) F e x t = M ( θ ) θ ¨ + h ( θ , θ ˙ ) \tau =M\left( \theta \right) \ddot{\theta}+c\left( \theta ,\dot{\theta} \right) \dot{\theta}+\tau _G+J^{\mathrm{T}}\left( \theta \right) \mathcal{F} _{\mathrm{ext}}=M\left( \theta \right) \ddot{\theta}+h\left( \theta ,\dot{\theta} \right) τ=M(θ)θ¨+c(θ,θ˙)θ˙+τG+JT(θ)Fext=M(θ)θ¨+h(θ,θ˙)

  • Inverse dynamics : τ ← R N E A ( θ , θ ˙ , θ ¨ , F e x t ) \tau \gets RNEA\left( \theta ,\dot{\theta},\ddot{\theta},\mathcal{F} _{\mathrm{ext}} \right) τ←RNEA(θ,θ˙,θ¨,Fext) ------ O ( N ) O\left( N \right) O(N) complexity

    RNEA can work directly with a given URDF-United Robotics Description Format model (kinematic tree + joint model + dynamic parameters). It does not require explicit formula for M ( θ ) , h ( θ , θ ˙ ) M\left( \theta \right),h\left( \theta ,\dot{\theta} \right) M(θ),h(θ,θ˙)

  • Forward dynamics : Given ( θ , θ ˙ ) , τ , F e x t \left( \theta ,\dot{\theta} \right) ,\tau ,\mathcal{F} _{\mathrm{ext}} (θ,θ˙),τ,Fext , find θ ¨ \ddot{\theta} θ¨

    Calculate h ( θ , θ ˙ ) = c ( θ , θ ˙ ) θ ˙ + τ G + J T F e x t h\left( \theta ,\dot{\theta} \right) =c\left( \theta ,\dot{\theta} \right) \dot{\theta}+\tau _{\mathrm{G}}+J^{\mathrm{T}}\mathcal{F} _{\mathrm{ext}} h(θ,θ˙)=c(θ,θ˙)θ˙+τG+JTFext

    Caculate mass matrix M ( θ ) = ∑ i = 1 N J i T I i J i M\left( \theta \right) =\sum_{i=1}^N{{J_{\mathrm{i}}}^{\mathrm{T}}\mathcal{I} {\mathrm{i}}J{\mathrm{i}}} M(θ)=∑i=1NJiTIiJi

    Solve M θ ¨ = τ − h ⇒ θ ¨ = M − 1 ( τ − h ) M\ddot{\theta}=\tau -h\Rightarrow \ddot{\theta}=M^{-1}\left( \tau -h \right) Mθ¨=τ−h⇒θ¨=M−1(τ−h): This is not the most efficient way to find θ ¨ \ddot{\theta} θ¨

4.2 Caculations of h and M

Denote our inverse dynamics algorithm : τ = R N E A ( θ , θ ˙ , θ ¨ , F e x t ) = M θ ¨ + h \tau =RNEA\left( \theta ,\dot{\theta},\ddot{\theta},\mathcal{F} _{\mathrm{ext}} \right) =M\ddot{\theta}+h τ=RNEA(θ,θ˙,θ¨,Fext)=Mθ¨+h

  • Calculation of h h h : obviously , τ = h \tau =h τ=h if θ ¨ = 0 \ddot{\theta}=0 θ¨=0. Therefore, h h h can be computed via : h ( θ , θ ˙ ) = R N E A ( θ , θ ˙ , 0 , F e x t ) h\left( \theta ,\dot{\theta} \right) =RNEA\left( \theta ,\dot{\theta},0,\mathcal{F} _{\mathrm{ext}} \right) h(θ,θ˙)=RNEA(θ,θ˙,0,Fext)

  • Calculation of M M M : Note h ( θ , θ ˙ ) = c ( θ , θ ˙ ) θ ˙ + τ G + J T F e x t h\left( \theta ,\dot{\theta} \right) =c\left( \theta ,\dot{\theta} \right) \dot{\theta}+\tau _{\mathrm{G}}+J^{\mathrm{T}}\mathcal{F} _{\mathrm{ext}} h(θ,θ˙)=c(θ,θ˙)θ˙+τG+JTFext

    Set G = 0 , F e x t = 0 , θ ˙ = 0 G=0,\mathcal{F} _{\mathrm{ext}}=0,\dot{\theta}=0 G=0,Fext=0,θ˙=0 , then h ( θ , θ ˙ ) = 0 h\left( \theta ,\dot{\theta} \right) =0 h(θ,θ˙)=0 , ⇒ τ = M ( θ ) θ ¨ \Rightarrow \tau =M\left( \theta \right) \ddot{\theta} ⇒τ=M(θ)θ¨

    We can compute the j j jth colum of M ( θ ) M\left( \theta \right) M(θ) by calling the inverse algorithm
    τ = M : , j ( θ ) = R N E A ( 0 , 0 , θ ¨ 0 , j , 0 ) \tau =M_{:,\mathrm{j}}\left( \theta \right) =RNEA\left( 0,0,\ddot{\theta}{0,\mathrm{j}},0 \right) τ=M:,j(θ)=RNEA(0,0,θ¨0,j,0) , θ ¨ 0 , j \ddot{\theta}{0,\mathrm{j}} θ¨0,j is a vector with all zeros except for a 1 at the j j jth entry
    θ ¨ 0 , 1 = [ 1 0 ⋮ 0 ] , τ = [ M 1 ( θ ) ⋯ M n ( θ ) ] , M 1 , j ( θ ) = τ θ ¨ 0 , 1 \ddot{\theta}{0,1}=\left[ \begin{array}{c} 1\\ 0\\ \vdots\\ 0\\ \end{array} \right] ,\tau =\left[ \begin{matrix} M_1\left( \theta \right)& \cdots& M{\mathrm{n}}\left( \theta \right)\\ \end{matrix} \right] ,M_{1,\mathrm{j}}\left( \theta \right) =\tau \ddot{\theta}_{0,1} θ¨0,1= 10⋮0 ,τ=[M1(θ)⋯Mn(θ)],M1,j(θ)=τθ¨0,1

  • A more effiicient algorithm for computing M M M is the Composite-Rigid-Body Algorithm(CRBA). Details can be found in Featherstone's Book

4.3 Forward Dynamics Algorithms

Now assume we have θ , θ ˙ , τ , M ( θ ) , h \theta ,\dot{\theta},\tau ,M\left( \theta \right) ,h θ,θ˙,τ,M(θ),h , then we can immediately compute θ ¨ \ddot{\theta} θ¨ as θ ¨ = M − 1 ( τ − h ) \ddot{\theta}=M^{-1}\left( \tau -h \right) θ¨=M−1(τ−h) ------ θ ¨ = F D ( τ , θ , θ ˙ , F e x t ) \ddot{\theta}=FD\left( \tau ,\theta ,\dot{\theta},\mathcal{F} _{\mathrm{ext}} \right) θ¨=FD(τ,θ,θ˙,Fext)

两种看似不同的求解思路,之间的关系是等同的

This provides a 2nd-order differential equation in R n \mathbb{R} ^n Rn , we can easily simulate the joint trajectory over any time period (under given ICs θ 0 , θ ˙ 0 \theta ^0,\dot{\theta}^0 θ0,θ˙0)

Computational Complexity:

RNEA : O ( N ) O\left( N \right) O(N)
h ( θ , θ ˙ ) = R N E A ( θ , θ ˙ , 0 , F e x t ) h\left( \theta ,\dot{\theta} \right) =RNEA\left( \theta ,\dot{\theta},0,\mathcal{F} _{\mathrm{ext}} \right) h(θ,θ˙)=RNEA(θ,θ˙,0,Fext) : O ( N ) O\left( N \right) O(N)
M ( θ ) M\left( \theta \right) M(θ) : O ( N 2 ) O\left( N^2 \right) O(N2)
M − 1 ( θ ) M^{-1}\left( \theta \right) M−1(θ) : O ( N 3 ) O\left( N^3 \right) O(N3)

Most efficient forward dynamics algorithm : Articulate-Body Algorithm(ABA) : O ( N ) O\left( N \right) O(N)

4.4 More Discussions

M ( θ ) M\left( \theta \right) M(θ) : Mass matrix , M T ( θ ) = M ( θ ) M^{\mathrm{T}}\left( \theta \right) =M\left( \theta \right) MT(θ)=M(θ), also positive semi-definite.
M ( θ ) = ∑ i = 1 N J i T I i J i M\left( \theta \right) =\sum_{i=1}^N{{J_{\mathrm{i}}}^{\mathrm{T}}\mathcal{I} {\mathrm{i}}J{\mathrm{i}}} M(θ)=∑i=1NJiTIiJi------ I i \mathcal{I} _{\mathrm{i}} Ii Inertia matrix symmetric / postive semi-definite

There are many equivalent ways to define c ( θ , θ ˙ ) c\left( \theta ,\dot{\theta} \right) c(θ,θ˙) , they are all related to the same product c ( θ , θ ˙ ) θ ˙ c\left( \theta ,\dot{\theta} \right) \dot{\theta} c(θ,θ˙)θ˙ ------ common and confusing

Typical expression for c c c : c i j = ∑ k = 1 1 2 ( ∂ M i j ∂ θ k + ∂ M i k ∂ θ j − ∂ M j k ∂ θ i ) θ ˙ k , Γ i j k = 1 2 ( ∂ M i j ∂ θ k + ∂ M i k ∂ θ j − ∂ M j k ∂ θ i ) c_{\mathrm{ij}}=\sum_{k=1}^{}{\frac{1}{2}\left( \frac{\partial M_{\mathrm{ij}}}{\partial \theta {\mathrm{k}}}+\frac{\partial M{\mathrm{ik}}}{\partial \theta {\mathrm{j}}}-\frac{\partial M{\mathrm{jk}}}{\partial \theta {\mathrm{i}}} \right)}\dot{\theta}{\mathrm{k}},\varGamma {\mathrm{ijk}}=\frac{1}{2}\left( \frac{\partial M{\mathrm{ij}}}{\partial \theta {\mathrm{k}}}+\frac{\partial M{\mathrm{ik}}}{\partial \theta {\mathrm{j}}}-\frac{\partial M{\mathrm{jk}}}{\partial \theta _{\mathrm{i}}} \right) cij=∑k=121(∂θk∂Mij+∂θj∂Mik−∂θi∂Mjk)θ˙k,Γijk=21(∂θk∂Mij+∂θj∂Mik−∂θi∂Mjk) chrostoffel symbol
c ( θ , θ ˙ ) c\left( \theta ,\dot{\theta} \right) c(θ,θ˙) defind using Γ i j k \varGamma _{\mathrm{ijk}} Γijk satisies : [ M ˙ − 2 c ] \left[ \dot{M}-2c \right] [M˙−2c] skew symmetric matrix ( n × n n\times n n×n)

M ( θ ) , c ( θ , θ ˙ ) , τ G M\left( \theta \right) ,c\left( \theta ,\dot{\theta} \right) ,\tau _G M(θ),c(θ,θ˙),τG all depend on I i \mathcal{I} _{\mathrm{i}} Ii linearly

相关推荐
风控牛1 小时前
【chromedriver编译-绕过selenium机器人检测】
java·python·selenium·测试工具·安全·机器人·行为验证
晓星航11 小时前
Docker本地部署Chatbot Ollama搭建AI聊天机器人并实现远程交互
人工智能·docker·机器人
忍界英雄12 小时前
LeetCode:2398. 预算内的最多机器人数目 双指针+单调队列,时间复杂度O(n)
算法·leetcode·机器人
Tisfy12 小时前
LeetCode 2398.预算内的最多机器人数目:滑动窗口+单调队列——思路清晰的一篇题解
算法·leetcode·机器人·题解·滑动窗口
北京搜维尔科技有限公司18 小时前
搜维尔科技:OptiTrack将捕捉到的人类动作数据映射到人形机器人的各个关节上进行遥操作
科技·机器人
King's King18 小时前
6年前倒闭的机器人独角兽,再次杀入AGV市场
机器人
孔武20 小时前
SG-SLAM下载部署安装运行记录
机器人·自动驾驶
云卓科技1 天前
无人机之控制距离篇
科技·安全·机器人·无人机·制造
云卓科技1 天前
无人机之飞行高度篇
科技·安全·机器人·无人机·制造
Java追光着2 天前
扣子智能体实战-汽车客服对话机器人(核心知识:知识库和卡片)
人工智能·机器人·汽车·智能体