Pytorch:torch.nn.utils.clip_grad_norm_梯度截断_解读

torch.nn.utils.clip_grad_norm_函数主要作用:

神经网络深度逐渐增加,网络参数量增多的时候,容易引起梯度消失和梯度爆炸。对于梯度爆炸问题,解决方法之一便是进行梯度剪裁torch.nn.utils.clip_grad_norm_(),即设置一个梯度大小的上限

注:旧版为torch.nn.utils.clip_grad_norm()

函数参数:

官网链接:https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html

torch.nn.utils.clip_grad_norm_(parameters, max_norm, norm_type=2.0, error_if_nonfinite=False, foreach=None)

"Clips gradient norm of an iterable of parameters. The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place."

"对一组可迭代(网络)参数的梯度范数进行裁剪。效果如同将所有参数连接成单个向量来计算范数。梯度原位修改。"

Parameters

  • parameters (Iterable[Tensor] or Tensor) -- 实施梯度裁剪的可迭代网络参数

    an iterable of Tensors or a single Tensor that will have gradients normalized(一个由张量或单个张量组成的可迭代对象(模型参数),将梯度归一化)

  • max_norm (float) -- 该组网络参数梯度的范数上限

    max norm of the gradients(梯度的最大值)

  • norm_type (float) --范数类型

    type of the used p-norm. Can be 'inf' for infinity norm.(所使用的范数类型。默认为L2范数,可以是无穷大范数('inf'))

  • error_if_nonfinite (bool) --

    if True, an error is thrown if the total norm of the gradients from parameters is nan, inf, or -inf. Default: False (will switch to True in the future)

  • foreach (bool) --

    use the faster foreach-based implementation. If None, use the foreach implementation for CUDA and CPU native tensors and silently fall back to the slow implementation for other device types. Default: None

源码解读:

参考:https://blog.csdn.net/Mikeyboi/article/details/119522689

(建议大家看看源码,更好理解函数意义,有注释)

python 复制代码
def clip_grad_norm_(parameters, max_norm, norm_type=2):
	# 处理传入的三个参数。
	# 首先将parameters中的非空网络参数存入一个列表,
	# 然后将max_norm和norm_type类型强制为浮点数。
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = list(filter(lambda p: p.grad is not None, parameters))
    max_norm = float(max_norm)
    norm_type = float(norm_type)
    
	#对无穷范数进行了单独计算,即取所有网络参数梯度范数中的最大值,定义为total_norm
    if norm_type == inf:
        total_norm = max(p.grad.data.abs().max() for p in parameters)

	# 对于其他范数,计算所有网络参数梯度范数之和,再归一化,
	# 即等价于把所有网络参数放入一个向量,再对向量计算范数。将结果定义为total_norm
    else:
        total_norm = 0
        for p in parameters:
            param_norm = p.grad.data.norm(norm_type)
            total_norm += param_norm.item() ** norm_type # norm_type=2 求平方(二范数)
        total_norm = total_norm ** (1. / norm_type) # norm_type=2 等价于 开根号
        
    # 最后定义了一个"裁剪系数"变量clip_coef,为传入参数max_norm和total_norm的比值(+1e-6防止分母为0的情况)。
    # 如果max_norm > total_norm,即没有溢出预设上限,则不对梯度进行修改。
    # 反之则以clip_coef为系数对全部梯度进行惩罚,使最后的全部梯度范数归一化至max_norm的值。
    # 注意该方法返回了一个 total_norm,实际应用时可以通过该方法得到网络参数梯度的范数,以便确定合理的max_norm值。
    clip_coef = max_norm / (total_norm + 1e-6)
    if clip_coef < 1:
        for p in parameters:
            p.grad.data.mul_(clip_coef)
    return total_norm

使用方法及分析:

应用逻辑为:

  1. 先计算梯度;
  2. 裁剪梯度(在函数内部会判断是否需要裁剪,具体看源码解读);
  3. 最后更新网络参数。

因此 torch.nn.utils.clip_grad_norm_() 的使用应该在loss.backward() 之后,optimizer.step() 之前,

在U-Net中如下:

python 复制代码
optimizer.zero_grad(set_to_none=True)
grad_scaler.scale(loss).backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), gradient_clipping)
grad_scaler.step(optimizer)
grad_scaler.update()

参考:https://blog.csdn.net/zhaohongfei_358/article/details/122820992

注意:

  • 从上面文章可以看到,clip_grad_norm 最后就是对所有的梯度乘以一个 clip_coefp.grad.data.mul_(clip_coef) ),而且乘的前提是clip_coef 一定是小于1的,所以,clip_grad_norm 只解决梯度爆炸问题,不解决梯度消失问题
  • clip_coef 的定义**clip_coef = max_norm / (total_norm + 1e-6)** 可以知道:max_norm越大,对于梯度爆炸的解决越柔和,max_norm越小,对梯度爆炸的解决越狠
相关推荐
云茧4 分钟前
机器学习中的Hello World:线性回归(一)
人工智能·机器学习·线性回归
嵌入式-老费9 分钟前
自己动手写深度学习框架(快速学习python和关联库)
开发语言·python·学习
他们叫我技术总监21 分钟前
从开发者视角深度评测:ModelEngine 与 AI 开发平台的技术博弈
java·人工智能·dubbo·智能体·modelengine
minhuan22 分钟前
构建AI智能体:八十三、当AI开始“失忆“:深入理解和预防模型衰老与数据漂移
人工智能·模型衰老·数据偏移·psi群体稳定性指标·ks统计量检验
一月是个猫23 分钟前
MCP协议之天气演练
python·mcp
AI浩23 分钟前
深入级联不稳定性:从 Lipschitz 连续性视角探讨图像恢复与目标检测的协同作用
人工智能·目标检测·php
笨鸟笃行24 分钟前
人工智能备考——大体题型讲解+1.1.1-1.1.5固定搭配总结
人工智能
大千AI助手25 分钟前
差分隐私随机梯度下降(DP-SGD)详解
人工智能·神经网络·差分隐私·sgd·大千ai助手·dp-sgd·差分隐私随机梯度下降
李辉200325 分钟前
Python逻辑运算符
java·网络·python
十三画者32 分钟前
【文献分享】DARKIN:基于蛋白质语言模型的零样本磷酸化位点与暗激酶关联基准测试
人工智能·语言模型·自然语言处理