2023亚马逊云科技re:Invent用Amazon Q打造你的知识库

随着ChatGPT的问世,我们迎来了许多创新和变革的机会。一年一度的亚马逊云科技大会re:Invent也带来了许多前言的技术,其中亚马逊云科技CEO Adam Selipsky在2023亚马逊云科技re:Invent大会中重磅推出Amazon Q,这预示着生成式AI的又一个里程碑。

在本文中,将探讨Amazon Q是什么以及它能为我们做些什么。还将详细介绍如何使用Amazon Q来构建知识库,并分享一些实际案例。下面一起深入了解Amazon Q,并探索如何在知识库建设中充分发挥其潜力。

Amazon Q是什么

Amazon Q是一款基于生成式人工智能的助手,通过连接如代码仓库、网址、数据库、文档、email等各种信息库来帮助企业或者个人以自然语言对话的方式,提供历史数据检索、摘要生成、内容撰写等。

Amazon Q与通用生成式AI的区别

通用的生成式AI最大问题在于内容来源于互联网的公开数据,无法针对特定的数据源进行训练,比如无法跟企业内部数据,业务相结合,也无法满足个人的个性化需求。同样使用ChatGPT遇到最大的问题在于数据源的限制,为了让ChatGPT学习某个特定的技能,需要将内容拆分再提供给ChatGPT学习,这大大限制了生成式AI的能力。因此Amazon Q较ChatGPT而言有以下优势:

  • 与特定业务相结合;

  • 支持多种数据源;

  • 将权限引入生成式AI中,在企业中可以根据组织架构对人员设置不同的访问权限;

  • 使用Amazon Kendra可以将已训练完成的数据源进行共享,大大缩短训练时间。

  • 接下来用Amazon Q打造一个Rust知识库。

用Amazon Q打造知识库

第一步

打开Amazon Q登录或创建账号,进入如下页面。在页面的开头就清晰描述Amazon Q的工作方式。点击【Create Application】,填写Application基本信息,点击【Create】进入下一步。

第二步

为应用程序选择索引器。有以下两种索引器:

  • native retriever

  • existing retriever

native retriever只能在当前应用下使用,existing retriever一旦创建可以被多个应用使用。第一次使用可选择native retriever。

第三步

添加数据源,Amazon Q提供了多种数据源,选择其中的Web crawler,填写数据源名称、url等关键信息。其他信息按照提示填写。特别注意Sync scope,尽可能缩小范围,避免爬取诸多无用的页面,进而影响索引速度和内容相关性。

第四步

点击【Sync now】后,需完成两个步骤:

  • 抓取页面内容

  • 为页面创建索引

网页数量越多,完成以上两步的时间就越久。

比较耗时的步骤在于创建索引。所以尽可能缩小爬取范围。其中:

  • rust_book1:rust语言圣经中文版

  • rust_book2:rust语音官方文档(英文版)

  • rust_book3:rust语音官方文档(中文版)

  • rust_book4:Rust语言实战(英文版)

  • rust_book5:Rust语言实战(中文版)

第五步

点击【Preview web experience】进行预览,将会打开一个对话界面进行测试。也可以通过最后一步使用IAM集成符合SAML 2.0的外部身份提供商(IdP)的方式进行部署对外通过访问。

测试结果如下,确实如官方文档所言目前仅支持对英文文档进行索引,虽然能用多种语言进行对话,但英语对话的效果最佳。

总结

Amazon Q旨在改变企业与数据交互的方式。该可以帮助用户解答特定于业务的问题,而不需要手动搜索。Amazon Q可以通过AWS管理控制台、公司文档页面、Slack等多个渠道访问,并保证数据隐私和安全。

想象在公司内的几个场景,一个新人,想要了解公司的业务;A项目现在谁负责,都有谁参与;A项目B业务板块怎么操作,文档在哪,当有了Amazon Q这一切都会发生改变。

相关推荐
珠海新立电子科技有限公司2 小时前
FPC柔性线路板与智能生活的融合
人工智能·生活·制造
IT古董3 小时前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
曼城周杰伦3 小时前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3
鼹鼠SDN3 小时前
僵尸毁灭工程 服务搭建 联机教程 无需公网IP、服务器
科技·电脑·数码·联机·僵尸毁灭工程·游戏联机·开服
余炜yw3 小时前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
莫叫石榴姐4 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
如若1234 小时前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib
YRr YRr4 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络
ChaseDreamRunner4 小时前
迁移学习理论与应用
人工智能·机器学习·迁移学习
Guofu_Liao4 小时前
大语言模型---梯度的简单介绍;梯度的定义;梯度计算的方法
人工智能·语言模型·矩阵·llama