【Hugging Face】解决BART模型调用时KeyError: ‘new_zeros‘的问题

错误代码:

python 复制代码
tokenizer = AutoTokenizer.from_pretrained("philschmid/bart-large-cnn-samsum")
model = AutoModelForSeq2SeqLM.from_pretrained("philschmid/bart-large-cnn-samsum")

model.eval()
model.to("cuda")
loss = 0
for i in range(len(self.dataset)):
    batch = tokenizer([self.dataset[i]["source"]], return_tensors="pt", padding=True).to("cuda")
    labels = tokenizer([self.dataset[i]["target"]], return_tensors="pt", padding=True).to("cuda")
    print(batch)
    outputs = model(**batch, labels=labels)
    print(outputs.loss.item())

报错内容:

python 复制代码
Traceback (most recent call last):
  File "D:\anaconda\envs\supTextDebug\lib\site-packages\transformers\tokenization_utils_base.py", line 266, in __getattr__
    return self.data[item]
KeyError: 'new_zeros'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "E:\supTextDebug\supTextDebugCode\textDebugger.py", line 360, in <module>
    debugger.run_baselines()
  File "E:\supTextDebug\supTextDebugCode\textDebugger.py", line 299, in run_baselines
    loss.get_loss()
  File "E:\supTextDebug\supTextDebugCode\lossbased.py", line 26, in get_loss
    outputs = model(**batch, labels=labels)
  File "D:\anaconda\envs\supTextDebug\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl
    return forward_call(*input, **kwargs)
  File "D:\anaconda\envs\supTextDebug\lib\site-packages\transformers\models\bart\modeling_bart.py", line 1724, in forward
    decoder_input_ids = shift_tokens_right(
  File "D:\anaconda\envs\supTextDebug\lib\site-packages\transformers\models\bart\modeling_bart.py", line 104, in shift_tokens_right
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
  File "D:\anaconda\envs\supTextDebug\lib\site-packages\transformers\tokenization_utils_base.py", line 268, in __getattr__
    raise AttributeError
AttributeError

解决方案:

错误行:outputs = model(**batch, labels=labels)

直接使用模型的forward方法,而不是将所有参数传递给 model:

python 复制代码
tokenizer = AutoTokenizer.from_pretrained("philschmid/bart-large-cnn-samsum")
model = AutoModelForSeq2SeqLM.from_pretrained("philschmid/bart-large-cnn-samsum")

model.eval()
model.to("cuda")
loss = 0
for i in range(len(self.dataset)):
    batch = tokenizer([self.dataset[i]["source"]], return_tensors="pt", padding=True).to("cuda")
    labels = tokenizer([self.dataset[i]["target"]], return_tensors="pt", padding=True).to("cuda")
    print(batch)
    outputs = model(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], labels=labels["input_ids"])
    print(outputs.loss.item())
相关推荐
黎燃5 小时前
短视频平台内容推荐算法优化:从协同过滤到多模态深度学习
人工智能
飞哥数智坊6 小时前
多次尝试用 CodeBuddy 做小程序,最终我放弃了
人工智能·ai编程
后端小肥肠7 小时前
别再眼馋 10w + 治愈漫画!Coze 工作流 3 分钟出成品,小白可学
人工智能·aigc·coze
唐某人丶10 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云10 小时前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术10 小时前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新10 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心10 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算11 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位11 小时前
马斯克周末血裁xAI 500人
人工智能·ai编程