19-二分-值域二分-有序矩阵中第 K 小的元素

这是二分法的第19篇算法,力扣链接

给你一个 n x n矩阵 matrix ,其中每行和每列元素均按升序排序,找到矩阵中第 k 小的元素。

请注意,它是 排序后 的第 k 小元素,而不是第 k不同 的元素。

你必须找到一个内存复杂度优于 O(n2) 的解决方案。

示例 1:

复制代码
输入:matrix = [[1,5,9],[10,11,13],[12,13,15]], k = 8
输出:13
解释:矩阵中的元素为 [1,5,9,10,11,12,13,13,15],第 8 小元素是 13

这道题很抽象,他告诉我们行和列都是有序的。但是不代表下一列一定大于上一行。

老规矩,直接上暴力法,先把所有数字存起来然后排序。

Go 复制代码
func kthSmallest(matrix [][]int, k int) int {
	nums := make([]int, len(matrix)*len(matrix[0]))
	index := 0
	for _, row := range matrix {
		for _, num := range row {
			nums[index] = num
			index++
		}
	}
	sort.Ints(nums)
	return nums[k-1]
}

那这道题二分法怎么搞呢?

首先明确,无论这个分布怎么诡异,在matrix[0][0]的数一定matrix[len(matrix)-1][len(matrix[0])-1]的数小。我门可以利用这两个值当作边界,往中间找mid,移动左右边界的逻辑可以根据小于等于mid的数的多少。当左右指针相等的时候返回指针就可以了。

这时候还会有一个疑问,当左右指针相等的时候,那个边界的值真的存在吗,这个值不是根据mid左右移动算出来的吗。

其实很简单,求出矩阵元素排序后,把矩阵分成两份,且使得前一份包含k个元素的数值范围左边界值(满足条件的数值可能是个范围,有些值不存在矩阵中,但这个左边界值一定在矩阵中)。可以尝试去推导一下,会发现这个结论是存在的。

上代码:

Go 复制代码
func kthSmallest(matrix [][]int, k int) int {
	l, r := matrix[0][0], matrix[len(matrix)-1][len(matrix[0])-1]
	for l <= r {
		mid := l + (r-l)/2
		if count(mid, matrix) < k {
			l = mid + 1
		} else {
			r = mid - 1
		}
	}
	return l
}

func count(mid int, matrix [][]int) int {
	result, x, y := 0, len(matrix)-1, 0
	for x >= 0 && y < len(matrix[0]) {
		if matrix[x][y] <= mid {
			result += x + 1
			y++
		} else {
			x--
		}
	}
	return result
}

这个count是有点学问的,这个是一列一列的加数字,梯形的方式加。

相关推荐
NAGNIP16 小时前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队17 小时前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
Fanxt_Ja21 小时前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表
侃侃_天下21 小时前
最终的信号类
开发语言·c++·算法
茉莉玫瑰花茶21 小时前
算法 --- 字符串
算法
博笙困了1 天前
AcWing学习——差分
c++·算法
NAGNIP1 天前
认识 Unsloth 框架:大模型高效微调的利器
算法
NAGNIP1 天前
大模型微调框架之LLaMA Factory
算法
echoarts1 天前
Rayon Rust中的数据并行库入门教程
开发语言·其他·算法·rust
Python技术极客1 天前
一款超好用的 Python 交互式可视化工具,强烈推荐~
算法