说说 style gan 中的感知路径长度(Perceptual Path Length)

我在之前的博库中介绍了 style gan 的基本原理,原文中有提出感知路径长度(Perceptual Path Length)的概念。这是一种评价生成器质量的方式。

PPL基本思想:给出两个随机噪声 z 1 , z 2 ​ ,为求得两点的感知路径长度PPL,采用微分的思想。把两噪声点插值路径细分成多个小段,求每个小段的长度,再求平均

为什么要距离越小越好?

假设上图表示perceptual距离空间。z1 ​ 可以生成一张白色的狗, z2 可以生成一张黑色的狗。那么我们在 z1和 z2 的欧式最短路径上,移动蓝色的点。在优秀的GAN网络中,得到的结果应该是perceptual距离也是最短的(也就是蓝色的线,最短距离)。绿色的线是比较差的GAN网络,在从白狗向黑狗变化的过程中,变化perceptual过大,出现了卧室。

PPL就是通过类似曲线积分的方法,计算出perceptual path的长度。比如下图,在两个不同的网络中。 P P L ( t + ϵ 1 ) < P P L ( t + ϵ 2 ) 。通过累加的方法逐步计算出绿线比蓝线长,那么得到了蓝线代表的GAN网络要比绿线代表的GAN网络要好。这里也就是说,以优化PPL为目标可以提升GAN网络的质量

具体实现方式如下:

(1) 使用两个VGG16提取特征的加权差异来表示一对图像间的感知距离。

(2) 将潜在空间插值路径细分为线性段,每个段上的感知差异的总和就是感知路径长度。

(3)使用多份样本,分别计算z和w的PPL(感知距离长度)。由于z已经归一化,所以对z使用球面插值 slerp,而对w使用线性插值 lerp。评估为裁剪后仅包含面部的图像。

相关推荐
心动啊1214 天前
深度神经网络1——梯度问题+标签数不够问题
人工智能·神经网络·dnn
ViperL14 天前
[智能算法]可微的神经网络搜索算法-FBNet
人工智能·深度学习·神经网络
Hcoco_me4 天前
深度学习和神经网络之间有什么区别?
人工智能·深度学习·神经网络
astragin4 天前
神经网络常见层速查表
人工智能·深度学习·神经网络
蒋星熠4 天前
深度学习实战指南:从神经网络基础到模型优化的完整攻略
人工智能·python·深度学习·神经网络·机器学习·卷积神经网络·transformer
大千AI助手4 天前
Dropout:深度学习中的随机丢弃正则化技术
人工智能·深度学习·神经网络·模型训练·dropout·正则化·过拟合
DogDaoDao5 天前
神经网络稀疏化设计构架方法和原理深度解析
人工智能·pytorch·深度学习·神经网络·大模型·剪枝·网络稀疏
西猫雷婶5 天前
pytorch基本运算-Python控制流梯度运算
人工智能·pytorch·python·深度学习·神经网络·机器学习
max5006005 天前
基于多元线性回归、随机森林与神经网络的农作物元素含量预测及SHAP贡献量分析
人工智能·python·深度学习·神经网络·随机森林·线性回归·transformer
I'm a winner5 天前
第七章:AI进阶之------输入与输出函数(一)
开发语言·人工智能·python·深度学习·神经网络·microsoft·机器学习