解决 MATLAB 遗传算法中 exitflg=4 的问题

一、优化问题简介

以求解下述优化问题为例:

P 1 : min ⁡ p ∑ k = 1 K p k s . t . { ∑ k = 1 K R k r e q l o g ( 1 + α k ∗ p k ) ≤ B b s , ∀ k ∈ K p k ≥ 0 , ∀ k ∈ K \begin{align} {P_1:}&\mathop{\min}{\bm{p}}{ \sum\limits{k=1}^K p_k } \nonumber \\ &s.t. \begin{cases} \sum\limits_{k=1}^K \frac{R_k^{req}}{log(1+\alpha_k * p_k) } \leq B^{bs}, \forall k \in \mathcal{K} \nonumber \\ p_k \geq 0, \forall k \in \mathcal{K} \end{cases} \end{align} P1:minpk=1∑Kpks.t.⎩ ⎨ ⎧k=1∑Klog(1+αk∗pk)Rkreq≤Bbs,∀k∈Kpk≥0,∀k∈K

其中, p k p_k pk是决策变量, α k \alpha_k αk、 R k r e q R_k^{req} Rkreq、 B b s B^{bs} Bbs均是已知的正常数, K = { 1 , 2 , ... , K } \mathcal{K}=\{1,2,\dots,K\} K={1,2,...,K}表示变量的索引数。

二、有问题的代码

先以 K = 2 K=2 K=2 为例,调用遗传算法,编写下述代码,以求解上述优化问题:

1. 主函数:

c 复制代码
clear all
clc
para.K = 2 ;

para.alpha =  ones( para.K , 1 );
para.B_bs  =  10 ; 
para.R_req =  [ 3.6702 ;  5.2690 ] ;  %  2*rand( para.K , 1 ) + 5 ; 
  
LB = zeros( para.K , 1 ) + 10^(-5);
[X,FVAL,EXITFLAG,OUTPUT] = ga( @(x) myfit(x,para), para.K ,[], [],[],[],LB,[], @(x) nonlcon(x,para),[] ) 

2. 目标函数:

c 复制代码
function f = myfit( x , para )
    f = sum(x);
end

3. 非线性约束函数:

c 复制代码
function [ g , h ] = nonlcon( x , para ) 
g = sum( para.R_req ./ log2( 1 + para.alpha .* x' )  ) - para.B_bs;
h=[] ;

在代码中的参数设定下,我的运行结果不稳定:(MATLAB R2014a版本)

  • 运行好的结果如下(exitflg=1):
  • 运行不好的结果如下(exitflg=4):

GA提示:

c 复制代码
Optimization terminated: norm of the step is less than  2.2204e-16
 and constraint violation is less than options.TolCon.

GA函数返回迭代终止原因是步长范数过小,显示exitflg=4。

我搜了很多网址,寻找 exitflg=4 的原因,在以下两处资料中得到答案:

(1)官方MATLAB的文档

(2)exitFlag meaning in GA solver

"when the solution change is smaller than matlab capability (exit flag 4), this means you may need to improve your objective function."

三、解决方案

在我的优化问题中,我将 low bound 从原始的 1 0 − 5 10^{-5} 10−5 提高到 0.1 就好了...... (由 log 函数的定义可知,决策变量 p k p_k pk 需要大于等于0,在我的问题中, p k p_k pk越远离0,越不会出现 exitflg=4 的情况,且 p k p_k pk 的最优解也没有取在0的附近,因此我可以设成了0.1)

因此,将main函数改为下式:

c 复制代码
clear all
clc
para.K = 2 ;

para.alpha =  ones( para.K , 1 );
para.B_bs  =  10 ; 
para.R_req =  [ 3.6702 ;  5.2690 ] ;  %  2*rand( para.K , 1 ) + 5 ; 

LB = zeros( para.K , 1 ) + 0.1;
[X,FVAL,EXITFLAG,OUTPUT] = ga( @(x) myfit(x,para), para.K ,[], [],[],[],LB,[], @(x) nonlcon(x,para),[] ) 

此后运行结果非常稳定!

四、其他方案

在摸索 exitflg=4 的原因过程中,除了前述上调 low bound 令其远离 log 小于0的区域以外,我还发现了一些其他两个可有效缓解 exitflg=4 的方案:

  1. 增大种群规模(如:PopulationSize=300)
  2. 扩大目标函数(如:给目标函数乘以100倍)
  3. 增大迭代轮数(如:Generations=2000)

具体调试过程见下图:

(1)目标函数扩大100倍以后:'Generations', 为2000、种群规模增长到300 时,exitflg仍为4,但此时已经很接近最优解了。

(2)目标函数扩大100倍以后:'Generations', 为10000、种群规模增长到300 时(即增大迭代次数),exitflg偶尔为4,大部分时间为1,此时就是最优解

(3)目标函数扩大10000倍以后:'Generations', 即使为2000、种群规模为300 时,exitflg大部分情况也会为1

由此可知,增大种群规模、扩大目标函数、增大迭代轮数等方法,确实可以减缓 exitflg=4 的情况。

五、最终代码

解决了该问题后,本篇博客文末附上最终代码:

1. 主函数:

c 复制代码
clear all
clc
para.K = 8 ;
% options = gaoptimset('PopulationSize', 100, ...     % 种群包含个体数目
%                      'CrossoverFraction', 0.75, ... % 交叉后代比率
%                      'Generations', 2000, ...        % 迭代代数
%                      'TolFun',10^(-2), ...
%                      'TolCon',10^(-2), ...
%                      'PlotFcns', {@gaplotbestf, @gaplotbestindiv}); % 绘制最优个体适应度函数与最优个体   % , @gaplotstopping

para.alpha =   ones( para.K , 1 );
para.B_bs  = 10 ; 
para.R_req =  5*rand( para.K , 1 ) + 2 ;  % [ 3.6702 ;  5.2690 ] ;   % 
  
LB = zeros( para.K , 1 ) + 0.1;
UB = ones( para.K , 1 ) * 100 ;
[X,FVAL,EXITFLAG,OUTPUT] = ga( @(x) myfit(x,para), para.K ,[], [],[],[],LB,UB, @(x) nonlcon(x,para),[]) 
% [X,FVAL,EXITFLAG,OUTPUT] = ga( @(x) myfit(x,para), para.K ,[], [],[],[],LB,UB, @(x) nonlcon(x,para),[],options ) 

2. 目标函数:

c 复制代码
function f = myfit( x , para )
    f = sum(x);
end

3. 非线性约束函数:

c 复制代码
function [ g , h ] = nonlcon( x , para ) 
g = sum( para.R_req ./ log2( 1 + para.alpha .* x' )  ) - para.B_bs;
h=[] ;

运行结果:

相关推荐
_OP_CHEN7 分钟前
C++进阶:(九)深度剖析unordered_map 与 unordered_set容器
开发语言·c++·stl容器·哈希表·哈希桶·unordered_map·unordered_set
七夜zippoe9 分钟前
Java并发编程基石:深入理解JMM(Java内存模型)与Happens-Before规则
java·开发语言·spring·jmm·happens-before
机器学习之心14 分钟前
NGO-VMD北方苍鹰算法优化变分模态分解+皮尔逊系数+小波阈值降噪+信号重构,MATLAB代码
算法·matlab·重构·信号重构·ngo-vmd·皮尔逊系数·小波阈值降噪
Mark Studio20 分钟前
QT linux 静态编译问题记录
开发语言·qt
无敌最俊朗@1 小时前
C++-Qt-音视频-基础问题01
开发语言·c++
kyle~1 小时前
C++---万能指针 void* (不绑定具体数据类型,能指向任意类型的内存地址)
开发语言·c++
MediaTea1 小时前
Python 第三方库:TensorFlow(深度学习框架)
开发语言·人工智能·python·深度学习·tensorflow
vortex51 小时前
Bash Glob 通配符详细指南:从 POSIX 标准到高级用法
开发语言·bash
KdanMin1 小时前
Android MediaCodec 硬编解码实战:从Camera预览到H264流与回环渲染
android·开发语言
吴名氏.2 小时前
电子书《21天学通Java(第5版)》
java·开发语言·21天学通java