解决 MATLAB 遗传算法中 exitflg=4 的问题

一、优化问题简介

以求解下述优化问题为例:

P 1 : min ⁡ p ∑ k = 1 K p k s . t . { ∑ k = 1 K R k r e q l o g ( 1 + α k ∗ p k ) ≤ B b s , ∀ k ∈ K p k ≥ 0 , ∀ k ∈ K \begin{align} {P_1:}&\mathop{\min}{\bm{p}}{ \sum\limits{k=1}^K p_k } \nonumber \\ &s.t. \begin{cases} \sum\limits_{k=1}^K \frac{R_k^{req}}{log(1+\alpha_k * p_k) } \leq B^{bs}, \forall k \in \mathcal{K} \nonumber \\ p_k \geq 0, \forall k \in \mathcal{K} \end{cases} \end{align} P1:minpk=1∑Kpks.t.⎩ ⎨ ⎧k=1∑Klog(1+αk∗pk)Rkreq≤Bbs,∀k∈Kpk≥0,∀k∈K

其中, p k p_k pk是决策变量, α k \alpha_k αk、 R k r e q R_k^{req} Rkreq、 B b s B^{bs} Bbs均是已知的正常数, K = { 1 , 2 , ... , K } \mathcal{K}=\{1,2,\dots,K\} K={1,2,...,K}表示变量的索引数。

二、有问题的代码

先以 K = 2 K=2 K=2 为例,调用遗传算法,编写下述代码,以求解上述优化问题:

1. 主函数:

c 复制代码
clear all
clc
para.K = 2 ;

para.alpha =  ones( para.K , 1 );
para.B_bs  =  10 ; 
para.R_req =  [ 3.6702 ;  5.2690 ] ;  %  2*rand( para.K , 1 ) + 5 ; 
  
LB = zeros( para.K , 1 ) + 10^(-5);
[X,FVAL,EXITFLAG,OUTPUT] = ga( @(x) myfit(x,para), para.K ,[], [],[],[],LB,[], @(x) nonlcon(x,para),[] ) 

2. 目标函数:

c 复制代码
function f = myfit( x , para )
    f = sum(x);
end

3. 非线性约束函数:

c 复制代码
function [ g , h ] = nonlcon( x , para ) 
g = sum( para.R_req ./ log2( 1 + para.alpha .* x' )  ) - para.B_bs;
h=[] ;

在代码中的参数设定下,我的运行结果不稳定:(MATLAB R2014a版本)

  • 运行好的结果如下(exitflg=1):
  • 运行不好的结果如下(exitflg=4):

GA提示:

c 复制代码
Optimization terminated: norm of the step is less than  2.2204e-16
 and constraint violation is less than options.TolCon.

GA函数返回迭代终止原因是步长范数过小,显示exitflg=4。

我搜了很多网址,寻找 exitflg=4 的原因,在以下两处资料中得到答案:

(1)官方MATLAB的文档

(2)exitFlag meaning in GA solver

"when the solution change is smaller than matlab capability (exit flag 4), this means you may need to improve your objective function."

三、解决方案

在我的优化问题中,我将 low bound 从原始的 1 0 − 5 10^{-5} 10−5 提高到 0.1 就好了...... (由 log 函数的定义可知,决策变量 p k p_k pk 需要大于等于0,在我的问题中, p k p_k pk越远离0,越不会出现 exitflg=4 的情况,且 p k p_k pk 的最优解也没有取在0的附近,因此我可以设成了0.1)

因此,将main函数改为下式:

c 复制代码
clear all
clc
para.K = 2 ;

para.alpha =  ones( para.K , 1 );
para.B_bs  =  10 ; 
para.R_req =  [ 3.6702 ;  5.2690 ] ;  %  2*rand( para.K , 1 ) + 5 ; 

LB = zeros( para.K , 1 ) + 0.1;
[X,FVAL,EXITFLAG,OUTPUT] = ga( @(x) myfit(x,para), para.K ,[], [],[],[],LB,[], @(x) nonlcon(x,para),[] ) 

此后运行结果非常稳定!

四、其他方案

在摸索 exitflg=4 的原因过程中,除了前述上调 low bound 令其远离 log 小于0的区域以外,我还发现了一些其他两个可有效缓解 exitflg=4 的方案:

  1. 增大种群规模(如:PopulationSize=300)
  2. 扩大目标函数(如:给目标函数乘以100倍)
  3. 增大迭代轮数(如:Generations=2000)

具体调试过程见下图:

(1)目标函数扩大100倍以后:'Generations', 为2000、种群规模增长到300 时,exitflg仍为4,但此时已经很接近最优解了。

(2)目标函数扩大100倍以后:'Generations', 为10000、种群规模增长到300 时(即增大迭代次数),exitflg偶尔为4,大部分时间为1,此时就是最优解

(3)目标函数扩大10000倍以后:'Generations', 即使为2000、种群规模为300 时,exitflg大部分情况也会为1

由此可知,增大种群规模、扩大目标函数、增大迭代轮数等方法,确实可以减缓 exitflg=4 的情况。

五、最终代码

解决了该问题后,本篇博客文末附上最终代码:

1. 主函数:

c 复制代码
clear all
clc
para.K = 8 ;
% options = gaoptimset('PopulationSize', 100, ...     % 种群包含个体数目
%                      'CrossoverFraction', 0.75, ... % 交叉后代比率
%                      'Generations', 2000, ...        % 迭代代数
%                      'TolFun',10^(-2), ...
%                      'TolCon',10^(-2), ...
%                      'PlotFcns', {@gaplotbestf, @gaplotbestindiv}); % 绘制最优个体适应度函数与最优个体   % , @gaplotstopping

para.alpha =   ones( para.K , 1 );
para.B_bs  = 10 ; 
para.R_req =  5*rand( para.K , 1 ) + 2 ;  % [ 3.6702 ;  5.2690 ] ;   % 
  
LB = zeros( para.K , 1 ) + 0.1;
UB = ones( para.K , 1 ) * 100 ;
[X,FVAL,EXITFLAG,OUTPUT] = ga( @(x) myfit(x,para), para.K ,[], [],[],[],LB,UB, @(x) nonlcon(x,para),[]) 
% [X,FVAL,EXITFLAG,OUTPUT] = ga( @(x) myfit(x,para), para.K ,[], [],[],[],LB,UB, @(x) nonlcon(x,para),[],options ) 

2. 目标函数:

c 复制代码
function f = myfit( x , para )
    f = sum(x);
end

3. 非线性约束函数:

c 复制代码
function [ g , h ] = nonlcon( x , para ) 
g = sum( para.R_req ./ log2( 1 + para.alpha .* x' )  ) - para.B_bs;
h=[] ;

运行结果:

相关推荐
倔强青铜33 小时前
苦练Python第18天:Python异常处理锦囊
开发语言·python
u_topian4 小时前
【个人笔记】Qt使用的一些易错问题
开发语言·笔记·qt
珊瑚里的鱼4 小时前
LeetCode 692题解 | 前K个高频单词
开发语言·c++·算法·leetcode·职场和发展·学习方法
AI+程序员在路上4 小时前
QTextCodec的功能及其在Qt5及Qt6中的演变
开发语言·c++·qt
xingshanchang5 小时前
Matlab的命令行窗口内容的记录-利用diary记录日志/保存命令窗口输出
开发语言·matlab
Risehuxyc5 小时前
C++卸载了会影响电脑正常使用吗?解析C++运行库的作用与卸载后果
开发语言·c++
AI视觉网奇5 小时前
git 访问 github
运维·开发语言·docker
不知道叫什么呀5 小时前
【C】vector和array的区别
java·c语言·开发语言·aigc
liulilittle5 小时前
.NET ExpandoObject 技术原理解析
开发语言·网络·windows·c#·.net·net·动态编程
wan_da_ren5 小时前
JVM监控及诊断工具-GUI篇
java·开发语言·jvm·后端