超维空间S2无人机使用说明书——32、使用yolov7进行目标识别

引言:为了提高yolo识别的质量,提高了yolo的版本,改用yolov7进行物体识别,同时系统兼容了低版本的yolo,包括基于C++的yolov3和yolov4,也有更高版本的yolov8。

简介,为了提高识别速度,系统采用了GPU进行加速,在使用7W功率的情况,大概可以稳定在20FPS,满功率情况下可以适当提高。

硬件:D435摄像头,Jetson orin nano 8G

环境:ubuntu20.04,ros-noetic, yolov7

步骤一: 启动摄像头,获取摄像头发布的图像话题

javascript 复制代码
roslaunch realsense2_camera rs_camera.launch  

没有出现红色报错,出现如下界面,表明摄像头启动成功

步骤二:启动yolov7识别节点

javascript 复制代码
roslaunch yolov7 yolov7.launch

launch文件如下,参数device设置为cuda,因为实际使用GPU加速,不是CPU跑,另外参数img_topic是订阅的节点话题,一定要与摄像头发布的实际话题名称对应上。其他参数可以根据实际情况进行调整即可

javascript 复制代码
<?xml version="1.0"?>
<launch>
    <node pkg="yolov7" type="YoloV7.py" name="yolov7">
        <!-- Path to your weight -->
        <param name="weights_path" type="str" value="/home/cwkj/cwkj_ws/src/ros-yolov7/cfg/weights/yolov7-tiny.pt"/>
        <!-- Path to a class_labels.txt file, if you leave it empty then no class labels are visualized.-->
        <param name="classes_path" type="str" value="//home/cwkj/cwkj_ws/src/ros-yolov7/cfg/config/coco.txt" />
        <!-- Input image topic name to subscribe to -->
        <param name="img_topic" type="str" value="/camera/color/image_raw" />
        <!-- [optional]  Confidence threshold (default=0.25) -->
        <param name="conf_thresh" type="double" value="0.20" />
        <!-- [optional]  Intersection over union threshold (default=0.45) -->
        <param name="iou_thresh" type="double" value="0.45" />
        <!-- [optional]  Queue size for publishing (default=3) -->
        <param name="queue_size" type="int" value="1" />
        <!-- [optional] Image size to which to resize each input image before feeding into the network (the final output is rescaled to the original image size) (default=640) -->
        <param name="img_size" type="int" value="640" />
        <!-- [optional] Flag whether to also publish image with the visualized detections (default=false) -->
        <param name="visualize" type="bool" value="true" />
        <!-- [optional] Torch device 'cuda' or 'cpu' (default="cuda") -->
        <param name="device" type="str" value="cuda" />
        <!-- [optional] Node frequency (default=10) -->
        <param name="frequency" type="int" value="10" />
    </node>
</launch>

出现如下界面表示yolov7启动成功

步骤三:打开rqt工具,查看识别效果

javascript 复制代码
rqt_image_view 

等待出现如下界面后,选择yolov7/visualize/image查看yolov7识别效果

总结:可以根据实际需要选择和是的yolo版本进行物体识别。系统中配置的基于darknet的yolov3和yolov4也有着非常好的识别效果。

相关推荐
IT猿手3 小时前
2025最新智能优化算法:鲸鱼迁徙算法(Whale Migration Algorithm,WMA)求解23个经典函数测试集,MATLAB
android·数据库·人工智能·算法·机器学习·matlab·无人机
【云轩】3 小时前
基于STM32与IFX007T的电机驱动全解析(无人机/机器人实战)
stm32·机器人·无人机
FL16238631294 小时前
[C++]使用纯opencv部署yolov12目标检测onnx模型
c++·opencv·yolo
倒霉蛋小马17 小时前
【YOLOv8】损失函数
深度学习·yolo·机器学习
livefan19 小时前
我国首条大型无人机城际低空物流航线成功首航
人工智能·无人机
【云轩】1 天前
【零基础实战】用STM32玩转DRV8313电机驱动:从原理到无人机/机器人控制
stm32·机器人·无人机
Perishell1 天前
无人机避障——感知篇(采用Livox-Mid360激光雷达获取点云数据显示)
linux·机器人·动态规划·无人机·slam
红色的山茶花1 天前
YOLOv11-ultralytics-8.3.67部分代码阅读笔记-build.py
笔记·深度学习·yolo
咏&志1 天前
目标检测之YOLO论文简读
人工智能·yolo·目标检测
创小董1 天前
探索低空,旅游景区无人机应用技术详解
无人机