超维空间S2无人机使用说明书——32、使用yolov7进行目标识别

引言:为了提高yolo识别的质量,提高了yolo的版本,改用yolov7进行物体识别,同时系统兼容了低版本的yolo,包括基于C++的yolov3和yolov4,也有更高版本的yolov8。

简介,为了提高识别速度,系统采用了GPU进行加速,在使用7W功率的情况,大概可以稳定在20FPS,满功率情况下可以适当提高。

硬件:D435摄像头,Jetson orin nano 8G

环境:ubuntu20.04,ros-noetic, yolov7

步骤一: 启动摄像头,获取摄像头发布的图像话题

javascript 复制代码
roslaunch realsense2_camera rs_camera.launch  

没有出现红色报错,出现如下界面,表明摄像头启动成功

步骤二:启动yolov7识别节点

javascript 复制代码
roslaunch yolov7 yolov7.launch

launch文件如下,参数device设置为cuda,因为实际使用GPU加速,不是CPU跑,另外参数img_topic是订阅的节点话题,一定要与摄像头发布的实际话题名称对应上。其他参数可以根据实际情况进行调整即可

javascript 复制代码
<?xml version="1.0"?>
<launch>
    <node pkg="yolov7" type="YoloV7.py" name="yolov7">
        <!-- Path to your weight -->
        <param name="weights_path" type="str" value="/home/cwkj/cwkj_ws/src/ros-yolov7/cfg/weights/yolov7-tiny.pt"/>
        <!-- Path to a class_labels.txt file, if you leave it empty then no class labels are visualized.-->
        <param name="classes_path" type="str" value="//home/cwkj/cwkj_ws/src/ros-yolov7/cfg/config/coco.txt" />
        <!-- Input image topic name to subscribe to -->
        <param name="img_topic" type="str" value="/camera/color/image_raw" />
        <!-- [optional]  Confidence threshold (default=0.25) -->
        <param name="conf_thresh" type="double" value="0.20" />
        <!-- [optional]  Intersection over union threshold (default=0.45) -->
        <param name="iou_thresh" type="double" value="0.45" />
        <!-- [optional]  Queue size for publishing (default=3) -->
        <param name="queue_size" type="int" value="1" />
        <!-- [optional] Image size to which to resize each input image before feeding into the network (the final output is rescaled to the original image size) (default=640) -->
        <param name="img_size" type="int" value="640" />
        <!-- [optional] Flag whether to also publish image with the visualized detections (default=false) -->
        <param name="visualize" type="bool" value="true" />
        <!-- [optional] Torch device 'cuda' or 'cpu' (default="cuda") -->
        <param name="device" type="str" value="cuda" />
        <!-- [optional] Node frequency (default=10) -->
        <param name="frequency" type="int" value="10" />
    </node>
</launch>

出现如下界面表示yolov7启动成功

步骤三:打开rqt工具,查看识别效果

javascript 复制代码
rqt_image_view 

等待出现如下界面后,选择yolov7/visualize/image查看yolov7识别效果

总结:可以根据实际需要选择和是的yolo版本进行物体识别。系统中配置的基于darknet的yolov3和yolov4也有着非常好的识别效果。

相关推荐
njsgcs7 分钟前
ppo靠近门模型 试训练 yolo评分
yolo·ppo
Dev7z9 小时前
服装厂废料(边角料)YOLO格式分类检测数据集
yolo·服装厂废料·边角料
黑客思维者11 小时前
机器学习071:深度学习【卷积神经网络】目标检测“三剑客”:YOLO、SSD、Faster R-CNN对比
深度学习·yolo·目标检测·机器学习·cnn·ssd·faster r-cnn
云卓SKYDROID12 小时前
无人机遥控器16通道设计要点
无人机·遥控器·高科技·云卓科技
棒棒的皮皮13 小时前
【深度学习】YOLO 模型部署全攻略(本地 / 嵌入式 / 移动端)
人工智能·深度学习·yolo·计算机视觉
棒棒的皮皮14 小时前
【深度学习】YOLO模型速度优化全攻略(模型 / 推理 / 硬件三层维度)
人工智能·深度学习·yolo·计算机视觉
棒棒的皮皮18 小时前
【深度学习】YOLO模型精度优化 Checklist
人工智能·深度学习·yolo·计算机视觉
q_302381955619 小时前
Atlas200DK 部署 yolov11 调用海康威视摄像头实现实时目标检测
人工智能·yolo·目标检测
DX_水位流量监测20 小时前
无人机测流之雷达流速仪监测技术分析
大数据·网络·人工智能·数据分析·自动化·无人机
duyinbi75171 天前
【深度学习】使用YOLOv8-MFMMAFPN进行泡沫检测的完整实现
人工智能·深度学习·yolo