OpenCV利用HSV颜色区间分离不同物体

需求

当前有个需求是从一个场景中将三个不同的颜色的二维码分离出来,如下图所示。

这里有两个思路可以使用

  • 思路一是通过深度学习的方式,训练一个能够识别旋转边界框的模型,但是需要大量的数据进行模型训练,此处缺少训练数据,不太方便执行。
  • 思路二则是直接通过颜色进行分离,找到颜色的区间,通过去骗判断的方式分别分离出三个不同颜色对应的轮廓。

方案

首先,先要找到图像的HSV颜色对应表格,如下所示。

然后按照读取图像->转化为HSV通道图像->颜色分离的思路编写代码即可,详细的代码如下。

python 复制代码
# -*- coding: utf-8 -*-
# @Time    : 2023/5/31 22:59
# @Author  : 肆十二
# @Email   : [email protected]
# @File    : demo
# @Software: PyCharm

import numpy as np
import cv2
import os

# 参考:https://blog.csdn.net/chenghaoy/article/details/86509950
def get_red(image_path):
    # 设定颜色HSV范围,假定为红色
    redLower_1 = np.array([0, 43, 46])
    redUpper_1 = np.array([10, 255, 255])

    redLower_2 = np.array([156, 43, 46])
    redUpper_2 = np.array([180, 255, 255])

    # 读取图像
    img = cv2.imread(image_path)

    # 将图像转化为HSV格式
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    # 去除颜色范围外的其余颜色
    mask_1 = cv2.inRange(hsv, redLower_1, redUpper_1)
    mask_2 = cv2.inRange(hsv, redLower_2, redUpper_2)
    mask = mask_1 + mask_2
    # mask = cv2.merge([mask_1, mask_2])
    # mask = cv2.
    # 二值化操作
    ret, binary = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY_INV)
    cv2.imwrite("results/red.jpg", binary)


def get_yellow(image_path):
    # 设定颜色HSV范围,假定为红色
    redLower = np.array([26, 43, 46])
    redUpper = np.array([34, 255, 255])

    # 读取图像
    img = cv2.imread(image_path)

    # 将图像转化为HSV格式
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    # 去除颜色范围外的其余颜色
    mask = cv2.inRange(hsv, redLower, redUpper)
    # 二值化操作
    ret, binary = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY_INV)
    cv2.imwrite("results/yellow.jpg", binary)

def get_green(image_path):
    # 设定颜色HSV范围,假定为红色
    redLower = np.array([35, 43, 46])
    redUpper = np.array([77, 255, 255])
    # 读取图像
    img = cv2.imread(image_path)
    # img = cv2.medianBlur(img, 5)
    # 将图像转化为HSV格式
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    # hsv =
    # 去除颜色范围外的其余颜色
    mask = cv2.inRange(hsv, redLower, redUpper)
    # 二值化操作
    ret, binary = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY_INV)
    # img[img==0] =
    cv2.imwrite("results/green.jpg", binary)

if __name__ == '__main__':
    image_path = "a.jpg"

    get_red(image_path)
    get_yellow(image_path)
    get_green(image_path)

OK在主函数中传入上图,之后在result文件夹下就能生成分离之后的结果,如下所示。

  • 绿色二维码分离结果

  • 红色二维码分离结果

  • 黄色二维码分离结果

总结

很多时候,不需要过于依赖AI,通过传统的图像检测算法也能达到良好的效果,比如今天就通过HSV颜色通道的形式来进行分离,这在工业场景中是非常实用的。

相关推荐
VR最前沿12 分钟前
全新Xsens Animate版本是迄今为止最大的软件升级,提供更清晰的数据、快捷的工作流程以及从录制开始就更直观的体验
人工智能·科技·机器人·自动化
禺垣16 分钟前
知识图谱技术概述
大数据·人工智能·深度学习·知识图谱
zhongqu_3dnest20 分钟前
众趣科技与我爱我家达成战略合作:AI空间计算技术赋能重塑房产服务新范式
人工智能·科技·三维建模·空间计算·vr看房·房产经纪
我就是全世界25 分钟前
2025主流智能体Agent终极指南:Manus、OpenManus、MetaGPT、AutoGPT与CrewAI深度横评
人工智能·python·机器学习
MYH51627 分钟前
类Transformer架构
人工智能
谢耳朵(wer~wer~)32 分钟前
机器学习复习3--模型评估
人工智能·机器学习
king of code porter35 分钟前
深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(1)
人工智能·深度学习·剪枝
普通老人1 小时前
【人工智能】一些基本概念
人工智能
后端小肥肠1 小时前
Coze实战:一分钟生成10w+独居女孩Vlog动画,零基础也能日更!
人工智能·aigc·coze
Blossom.1181 小时前
使用Python和OpenCV实现图像识别与目标检测
人工智能·python·神经网络·opencv·安全·目标检测·机器学习