bevfusion 学习笔记

目录

[tensorrt ros部署:](#tensorrt ros部署:)

[也依赖ros2 c++](#也依赖ros2 c++)

ros2安装指导:

相机标定工具源码:

官方github,部分模型开源


tensorrt ros部署:

https://github.com/linClubs/BEVFusion-ROS-TensorRT

也依赖ros2 c++

GitHub - newintelligence4/BEVfusion_preprocess: Multiple Lidar preprocessor for BEVfusion

ros2安装指导:

ROS2学习笔记(一)------Win11安装及使用 - 知乎

安装手册:

Windows (binary) --- ROS 2 Documentation: Humble documentation

下载地址:Releases · ros2/ros2 · GitHub

相机标定工具源码:

GitHub - linClubs/Calibration-Is-All-You-Need: calibration is you need including camera、imu、camera2camera、 camera2lidar、imu2camera、imu2lidar.

官方github,部分模型开源

https://github.com/ADLab-AutoDrive/BEVFusion

没有开源centerpoint版,

Main Results

nuScenes detection test

Model Head 3DBackbone 2DBackbone mAP NDS Link
BEVFusion TransFusion-L VoxelNet Dual-Swin-T 69.2 71.8 Detection
BEVFusion* TransFusion-L VoxelNet Dual-Swin-T 71.3 73.3 Leadboard

nuScenes detection validation

Model Head 3DBackbone 2DBackbone mAP NDS Model
BEVFusion PointPillars - Dual-Swin-T 22.9 31.1 Model
BEVFusion PointPillars PointPillars - 35.1 49.8 Model
BEVFusion PointPillars PointPillars Dual-Swin-T 53.5 60.4 Model
BEVFusion CenterPoint - Dual-Swin-T 27.1 32.1 -
BEVFusion CenterPoint VoxelNet - 57.1 65.4 -
BEVFusion CenterPoint VoxelNet Dual-Swin-T 64.2 68.0 -
BEVFusion TransFusion-L - Dual-Swin-T 22.7 26.1 -
BEVFusion TransFusion-L VoxelNet - 64.9 69.9 -
BEVFusion TransFusion-L VoxelNet Dual-Swin-T 67.9 71.0 -
BEVFusion* TransFusion-L VoxelNet Dual-Swin-T 69.6 72.1 Model

GitHub - mit-han-lab/bevfusion: [ICRA'23] BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation

3D Object Detection (on nuScenes validation)

Model Modality mAP NDS Checkpoint
BEVFusion C+L 68.52 71.38 Link
Camera-Only Baseline C 35.56 41.21 Link
LiDAR-Only Baseline L 64.68 69.28 Link

Note : The camera-only object detection baseline is a variant of BEVDet-Tiny with a much heavier view transformer and other differences in hyperparameters. Thanks to our efficient BEV pooling operator, this model runs fast and has higher mAP than BEVDet-Tiny under the same input resolution. Please refer to BEVDet repo for the original BEVDet-Tiny implementation. The LiDAR-only baseline is TransFusion-L.

BEV Map Segmentation (on nuScenes validation)

Model Modality mIoU Checkpoint
BEVFusion C+L 62.95 Link
Camera-Only Baseline C 57.09 Link
LiDAR-Only Baseline L 48.56 Link
相关推荐
QT 小鲜肉7 分钟前
【QT/C++】Qt定时器QTimer类的实现方法详解(超详细)
开发语言·数据库·c++·笔记·qt·学习
MeowKnight9588 分钟前
【Qt】Qt实践记录3——UDP通信
笔记·qt
REDcker14 分钟前
前端打包工具 - Rollup 打包工具笔记
前端·笔记
lkbhua莱克瓦241 小时前
Java基础——集合进阶用到的数据结构知识点1
java·数据结构·笔记·github
Mr.Jessy1 小时前
Web APIs 学习第五天:日期对象与DOM节点
开发语言·前端·javascript·学习·html
进化中的码农1 小时前
Go中的泛型编程和reflect(反射)
开发语言·笔记·golang
存在morning1 小时前
【人工智能学习笔记 三】 AI教学之前端跨栈一:React整体分层架构
笔记·学习·架构
巫婆理发2221 小时前
评估指标+数据不匹配+贝叶斯最优误差(分析方差和偏差)+迁移学习+多任务学习+端到端深度学习
深度学习·学习·迁移学习
霜绛2 小时前
C#知识补充(二)——命名空间、泛型、委托和事件
开发语言·学习·unity·c#
好望角雾眠2 小时前
第四阶段C#通讯开发-6:Socket之UDP
开发语言·笔记·学习·udp·c#