bevfusion 学习笔记

目录

[tensorrt ros部署:](#tensorrt ros部署:)

[也依赖ros2 c++](#也依赖ros2 c++)

ros2安装指导:

相机标定工具源码:

官方github,部分模型开源


tensorrt ros部署:

https://github.com/linClubs/BEVFusion-ROS-TensorRT

也依赖ros2 c++

GitHub - newintelligence4/BEVfusion_preprocess: Multiple Lidar preprocessor for BEVfusion

ros2安装指导:

ROS2学习笔记(一)------Win11安装及使用 - 知乎

安装手册:

Windows (binary) --- ROS 2 Documentation: Humble documentation

下载地址:Releases · ros2/ros2 · GitHub

相机标定工具源码:

GitHub - linClubs/Calibration-Is-All-You-Need: calibration is you need including camera、imu、camera2camera、 camera2lidar、imu2camera、imu2lidar.

官方github,部分模型开源

https://github.com/ADLab-AutoDrive/BEVFusion

没有开源centerpoint版,

Main Results

nuScenes detection test

Model Head 3DBackbone 2DBackbone mAP NDS Link
BEVFusion TransFusion-L VoxelNet Dual-Swin-T 69.2 71.8 Detection
BEVFusion* TransFusion-L VoxelNet Dual-Swin-T 71.3 73.3 Leadboard

nuScenes detection validation

Model Head 3DBackbone 2DBackbone mAP NDS Model
BEVFusion PointPillars - Dual-Swin-T 22.9 31.1 Model
BEVFusion PointPillars PointPillars - 35.1 49.8 Model
BEVFusion PointPillars PointPillars Dual-Swin-T 53.5 60.4 Model
BEVFusion CenterPoint - Dual-Swin-T 27.1 32.1 -
BEVFusion CenterPoint VoxelNet - 57.1 65.4 -
BEVFusion CenterPoint VoxelNet Dual-Swin-T 64.2 68.0 -
BEVFusion TransFusion-L - Dual-Swin-T 22.7 26.1 -
BEVFusion TransFusion-L VoxelNet - 64.9 69.9 -
BEVFusion TransFusion-L VoxelNet Dual-Swin-T 67.9 71.0 -
BEVFusion* TransFusion-L VoxelNet Dual-Swin-T 69.6 72.1 Model

GitHub - mit-han-lab/bevfusion: [ICRA'23] BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation

3D Object Detection (on nuScenes validation)

Model Modality mAP NDS Checkpoint
BEVFusion C+L 68.52 71.38 Link
Camera-Only Baseline C 35.56 41.21 Link
LiDAR-Only Baseline L 64.68 69.28 Link

Note : The camera-only object detection baseline is a variant of BEVDet-Tiny with a much heavier view transformer and other differences in hyperparameters. Thanks to our efficient BEV pooling operator, this model runs fast and has higher mAP than BEVDet-Tiny under the same input resolution. Please refer to BEVDet repo for the original BEVDet-Tiny implementation. The LiDAR-only baseline is TransFusion-L.

BEV Map Segmentation (on nuScenes validation)

Model Modality mIoU Checkpoint
BEVFusion C+L 62.95 Link
Camera-Only Baseline C 57.09 Link
LiDAR-Only Baseline L 48.56 Link
相关推荐
军军君0129 分钟前
Three.js基础功能学习十三:太阳系实例上
前端·javascript·vue.js·学习·3d·前端框架·three
bylander1 小时前
【AI学习】TM Forum《Autonomous Networks Implementation Guide》快速理解
人工智能·学习·智能体·自动驾驶网络
kida_yuan1 小时前
【Linux】运维实战笔记 — 我常用的方法与命令
linux·运维·笔记
xxxmine1 小时前
redis学习
数据库·redis·学习
laplace01231 小时前
Claude Skills 笔记整理
人工智能·笔记·agent·rag·skills
三块可乐两块冰1 小时前
【第二十八周】机器学习笔记二十九
笔记
血小板要健康2 小时前
Java基础常见面试题复习合集1
java·开发语言·经验分享·笔记·面试·学习方法
童话名剑2 小时前
情感分类与词嵌入除偏(吴恩达深度学习笔记)
笔记·深度学习·分类
Yff_world2 小时前
网络通信模型
学习·网络安全
智者知已应修善业2 小时前
【查找字符最大下标以*符号分割以**结束】2024-12-24
c语言·c++·经验分享·笔记·算法