MySQL索引

目录

索引概念

  • 数据库中的数据是以记录为单位的,如果一条一条进行查找,几十万数据就已经到了查找的瓶颈,如果上百万数据的话,查找就会非常的浪费时间。
  • 索引的价值在于提高海量数据的检索速度,只要执行了正确的创建索引的操作,查询速度就可能提高成百上千倍。当一张表创建索引后,在数据库底层就会为表中的数据记录构建特定的数据结构,后续在查询表中数据时就能通过查询该数据结构快速定位到目标数据。
  • 索引虽然提高了数据的查询速度,但在一定程度上也会降低数据增删改的效率,因为这时在对表中的数据进行增删改操作时,除了需要进行对应的增删改操作之外,可能还需要对底层建立的数据结构进行调整维护。

常见索引分为:

  • 主键索引(primary key);
  • 唯一索引(unique);
  • 普通索引(index);
  • 全文索引(fulltext)--解决中子文索引问题。

接下来我们创建一个案例,创建一张海量表,测试一下有无索引的区别。

cpp 复制代码
drop database if exists `index_demon`;
create database if not exists `index_demon` default character set utf8;
use `index_demon`;

-- 构建一个8000000条记录的数据
-- 构建的海量表数据需要有差异性,所以使用存储过程来创建

-- 产生随机字符串
delimiter $$
create function rand_string(n INT)
returns varchar(255)
begin
declare chars_str varchar(100) default
'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
declare return_str varchar(255) default '';
declare i int default 0;
while i < n do
set return_str =concat(return_str,substring(chars_str,floor(1+rand()*52),1));
set i = i + 1;
end while;
return return_str;
end $$
delimiter ;

-- 产生随机数字
delimiter $$
create function rand_num( )
returns int(5)
begin
declare i int default 0;
set i = floor(10+rand()*500);
return i;
end $$
delimiter ;

-- 创建存储过程,向雇员表添加海量数据
delimiter $$
create procedure insert_emp(in start int(10),in max_num int(10))
begin
declare i int default 0;
set autocommit = 0;
repeat
set i = i + 1;
insert into EMP values ((start+i)
,rand_string(6),'SALESMAN',0001,curdate(),2000,400,rand_num());
until i = max_num
end repeat;
commit;
end $$
delimiter ;

-- 雇员表
CREATE TABLE `EMP` (
  `empno` int(6) unsigned zerofill NOT NULL COMMENT '雇员编号',
  `ename` varchar(10) DEFAULT NULL COMMENT '雇员姓名',
  `job` varchar(9) DEFAULT NULL COMMENT '雇员职位',
  `mgr` int(4) unsigned zerofill DEFAULT NULL COMMENT '雇员领导编号',
  `hiredate` datetime DEFAULT NULL COMMENT '雇佣时间',
  `sal` decimal(7,2) DEFAULT NULL COMMENT '工资月薪',
  `comm` decimal(7,2) DEFAULT NULL COMMENT '奖金',
  `deptno` int(2) unsigned zerofill DEFAULT NULL COMMENT '部门编号'
);

-- 执行存储过程,添加8000000条记录
call insert_emp(100001, 8000000);

上述SQL中创建了一个名为index_demon的数据库,在该数据库中创建了一个名为EMP的员工表,并向表当中插入了八百万条记录。

将上述SQL保存到文件中,然后在MySQL中使用source命令依次执行文件中的SQL即可。

此时我们并没有创建索引,我们试一下查询员工编号为998877的员工。

可以看到耗时4.29秒,这还是在本机一个人来操作,在实际项目中,如果放在公网中,假如同时有

1000个人并发查询,那很可能就死机。

接下来我们创建一个索引再来看一下测试结果。

我们会发现创建索引以后,这时再查询EMP表中指定工号的员工信息,可以看到几乎检测不到查询时耗费的时间。

根本原因就是,给员工工号创建索引后再根据员工工号来查询数据,这时就能够直接通过底层建立的数据结构来快速定位到目标数据,从而提高数据的检索速度,这就是索引的价值。

认识磁盘

MySQL与存储

MySQL 给用户提供存储服务,而存储的都是数据,数据在磁盘这个外设当中。磁盘是计算机中的一个机械设备,相比于计算机其他电子元件,磁盘效率是比较低的,在加上IO本身的特征,可以知道,如何提交效率,是 MySQL 的一个重要话题。

磁盘结构

其中:

  • 永磁铁: 机械硬盘的存储方式与磁带比较类似,磁体具有记忆的功能,永磁铁是为了保证磁性的稳定。
  • 音圈马达: 硬盘读取数据的关键部位,主要作用是将存储在磁盘上的信息转换为电信号向外传输。
  • 主轴: 保证电机稳定的转动,磁盘转动才能读出数据。
  • 空气滤波片: 过滤空气硬盘透气孔中进入的空气,保证硬盘内部清洁,同时还可以防止硬盘内部的零件氧化,确保硬盘安全使用。
  • 磁盘: 硬盘一般都是铝合金制作的,主要是用来存储文件的。
  • 磁头: 用来读取盘片上的信息。
  • 串行接口: 用来连接电脑与硬盘的接口,起到传输的作用。

磁盘中的一个扇区

数据库文件,本质其实就是保存在磁盘的盘片当中。也就是上面的一个个小格子中,就是我们经常所说的扇区。当然,数据库文件很大,也很多,一定需要占据多个扇区。

  • 从上图可以看出来,在半径方向上,距离圆心越近,扇区越小,距离圆心越远,扇区越大;
  • 那么,所有扇区都是默认512字节吗?目前是的,我们也这样认为。因为保证一个扇区多大,是由
    比特位密度决定的。
  • 不过最新的磁盘技术,已经慢慢的让扇区大小不同了,不过我们现在暂时不考虑。

我们在使用Linux,所看到的大部分目录或者文件,其实就是保存在硬盘当中的。所以,最基本的,找到一个文件的全部,本质,就是在磁盘找到所有保存文件的扇区,而我们能够定位任何一个扇区,那么便能找到所有扇区,因为查找方式是一样的。

定位扇区

  • 柱面(磁道): 多盘磁盘,每盘都是双面,大小完全相等。那么同半径的磁道,整体上便构成了一个柱面;
  • 每个盘面都有一个磁头,那么磁头和盘面的对应关系便是1对1的;
  • 所以,我们只需要知道,磁头(Heads)、柱面(Cylinder)(等价于磁道)、扇区(Sector)对应的编号。即可在磁盘上定位所要访问的扇区。这种磁盘数据定位方式叫做 CHS 。不过实际系统软件使用的并不是 CHS (但是硬件是),而是 LBA ,一种线性地址,可以想象成虚拟地址与物理地址。系统将 LBA 地址最后会转化成为 CHS ,交给磁盘去进行数据读取。

结论

我们现在已经能够在硬件层面定位,任何一个基本数据块了(扇区)。那么在系统软件上,就直接按照扇区(512字节,部分4096字节),进行IO交互吗?不是

  • 如果操作系统直接使用硬件提供的数据大小进行交互,那么系统的IO代码,就和硬件强相关,换言之,如果硬件发生变化,系统必须跟着变化
  • 从目前来看,单次IO 512字节,还是太小了。IO单位小,意味着读取同样的数据内容,需要进行多次磁盘访问,会带来效率的降低。
  • 之前学习文件系统,就是在磁盘的基本结构下建立的,文件系统读取基本单位,就不是扇区,而是数据块。

故系统读取磁盘,是以块为单位的,基本单位是 4KB 。

磁盘随机访问(Random Access)与连续访问(Sequential Access)

  • 随机访问:本次IO所给出的扇区地址和上次IO给出扇区地址不连续,这样的话磁头在两次IO操作之间需要作比较大的移动动作才能重新开始读/写数据。

  • 连续访问:如果当次IO给出的扇区地址与上次IO结束的扇区地址是连续的,那磁头就能很快的开始这次IO操作,这样的多个IO操作称为连续访问。

因此尽管相邻的两次IO操作在同一时刻发出,但如果它们的请求的扇区地址相差很大的话也只能称为随机访问,而非连续访问。磁盘是通过机械运动进行寻址的,连续访问不需要过多的定位,故效率比较高。

MySQL与磁盘交互的基本单位

而 MySQL 作为一款应用软件,可以想象成一种特殊的文件系统。它有着更高的IO场景,所以,为了提高基本的IO效率, MySQL 进行IO的基本单位是 16KB 。

也就是说,磁盘这个硬件设备的基本单位是 512 字节,而 MySQL InnoDB引擎 使用16KB进行IO交互。即MySQL 和磁盘进行数据交互的基本单位是16KB 。这个基本数据单元,在 MySQL 这里叫做page。

建立共识

  • MySQL 中的数据文件,是以page为单位保存在磁盘当中的。
  • MySQL 的 CURD 操作,都需要通过计算,找到对应的插入位置,或者找到对应要修改或者查询的数据。
  • 而只要涉及计算,就需要CPU参与,而为了便于CPU参与,一定要能够先将数据移动到内存当中。
  • 所以在特定时间内,数据一定是磁盘中有,内存中也有。后续操作完内存数据之后,以特定的刷新策略,刷新到磁盘。而这时,就涉及到磁盘和内存的数据交互,也就是IO了。而此时IO的基本单位就是Page。
  • 为了更好的进行上面的操作, MySQL 服务器在内存中运行的时候,在服务器内部,就申请了被称为 Buffer Pool 的的大内存空间,来进行各种缓存。其实就是很大的内存空间,来和磁盘数据进行IO交互。
  • 为何更高的效率,一定要尽可能的减少系统和磁盘IO的次数。

所谓的操作系统与磁盘IO的基本交互为4KB,其实是指内核缓冲区与磁盘之间是以4 KB进行数据交互的,而MySQL与磁盘之间并不是直接进行交互的,所以MySQL与磁盘之间交付的基本单位是16KB指的是MySQL与内核缓冲区交互的基本单位是16KB,只不过在说的时候更关注的是MySQL和磁盘之间的关系,所以直接说的是MySQL与磁盘交互的基本单位是16KB,相当于忽略了中间的内核缓冲区。

索引的理解

建立测试表

首先,我们建立一个测试表:

然后我们向表中插入多条记录,但是我们并没有按照主键的大小顺序插入。

接下来我们查看表中的数据,发现竟然默认是有序的。

原因就在于因为我们创建表时设置了主键,即便向表中插入数据时是乱序插入的,MySQL底层也会自动按照主键对插入的数据进行排序。

为何IO交互要是 Page?

  • 如上面的5条记录,如果MySQL要查找id=2的记录,第一次加载id=1,第二次加载id=2,一次一条记录,那么就需要2次IO。如果要找id=5,那么就需要5次IO。
  • 但如果这5条(或者更多)都被保存在一个Page中(16KB,能保存很多记录),那么第一次IO查找id=2的时候,整个Page会被加载到MySQL的Buffer Pool中,这里完成了一次IO。但是往后如果在查找id=1,3,4,5等,完全不需要进行IO了,而是直接在内存中进行了。所以,就在单Page里面,大大减少了IO的次数。
  • 我们不能严格保证用户一定下次找的数据,就在这个Page里面,但是有很大概率,因为有局部性原理。往往IO效率低下的最主要矛盾不是IO单次数据量的大小,而是IO的次数。

理解单个Page

  • MySQL中要管理很多数据文件,在运行期间一定有大量的Page需要被换入换出,因此MySQL一定需要将内存中大量的Page管理起来。
  • MySQL将内存中的每一个Page都用一个结构体描述起来,然后再将各个结构体以双链表的形式组织起来,因此一个Page结构体内部既包含数据字段,也包含属性字段。
  • 此外,为了方便后续数据的插入和删除,每个Page结构体内部存储的数据记录会以单链表的形式组织起来,并且各个记录之间会按照主键进行排序。

单个Page结构大概如下:

因为有主键的问题, MySQL 会默认按照主键给我们的数据进行排序,从上面的Page内数据记录可以看

出,数据是有序且彼此关联的。

为什么数据库在插入数据时要对其进行排序呢?我们按正常顺序插入数据不是也挺好的吗?

  • 插入数据时排序的目的,就是优化查询的效率。页内部存放数据的模块,实质上也是一个链表的结构,链表的特点也就是增删快,查询修改慢,所以优化查询的效率是必须的。
  • 正是因为有序,在查找的时候,从头到尾都是有效查找,没有任何一个查找是浪费的,而且,如果运气好,是可以提前结束查找过程的。

理解多个Page

  • 通过上面的分析,我们知道,上面页模式中,只有一个功能,就是在查询某条数据的时候直接将一整页的数据加载到内存中,以减少硬盘IO次数,从而提高性能。但是,我们也可以看到,现在的页模式内部,实际上是采用了链表的结构,前一条数据指向后一条数据,本质上还是通过数据的逐条比较来取出特定的数据。
  • 如果有1千万条数据,一定需要多个Page来保存1千万条数据,多个Page彼此使用双链表链接起来,而且每个Page内部的数据也是基于链表的。

多个Page结构如下:

单个Page内创建页内目录

  • Page结构体内部存储的数据记录是以单链表的形式组织起来的,当页内部的数据量增多时,本质在页内部进行的还是线性遍历,效率低下。
  • 这时可以在Page结构体内部引入页内目录,将Page结构体内部存储的数据记录按照主键划分为若干区域,页内目录中就存储着这若干区域的最小键值。
  • 在Page结构体内部引入页内目录后,在页内部查询数据时就可以先通过页内目录找到目标数据所在区域的起始记录,然后再从该记录开始向后遍历找到目标记录。

当前,在一个Page内部,我们引入了目录。比如,我们要查找id=4记录,之前必须线性遍历4次,才能拿到结果。现在直接通过目录2[3],直接进行定位新的起始位置,提高了效率。这也就可以解释之前为什么通过键值MySQL会自动排序了。

多个Page内创建页内目录

MySQL 中每一页的大小只有 16KB ,单个Page大小固定,所以随着数据量不断增大, 16KB 不可能存下所有的数据,那么必定会有多个页来存储数据。

在单表数据不断被插入的情况下, MySQL 会在容量不足的时候,自动开辟新的Page来保存新的数据,然后通过指针的方式,将所有的Page组织起来。

Page之上创建页目录

我们可以通过多个Page遍历,Page内部通过目录来快速定位数据。可是,貌似这样也有效率问题,在Page之间,也是需要 MySQL 遍历的,遍历意味着依旧需要进行大量的IO,将下一个Page加载到内存,进行线性检测。这样就显得我们之前的Page内部的目录,有点杯水车薪了。

其实我们就可以给Page也带上页目录:

  • 使用一个目录项来指向某一页,而这个目录项存放的就是将要指向的页中存放的最小数据的键值。
  • 和页内目录不同的地方在于,这种目录管理的级别是页,而页内目录管理的级别是行。
  • 其中,每个目录项的构成是:键值+指针。

存在一个目录页来管理页目录,目录页中的数据存放的就是指向的那一页中最小的数据。有数据,就可通过比较,找到该访问那个Page,进而通过指针,找到下一个Page。

其实目录页的本质也是页,普通页中存的数据是用户数据,而目录页中存的数据是普通页的地址。

我们可以不断在页目录之上再创建页目录,最终就一定能够得到一个入口页目录,这时在查询数据时就可以从入口页目录开始不断查询页目录,最终找到目标数据所在的Page,然后再在该Page内部找到目标数据。

  • 很明显上面的结构就是一颗B+树,这棵B+树就是InnoDB的索引结构。
  • 只要我们在创建表时设置了主键,MySQL在底层就会自动将这张表中的的数据以B+树的形式组织起来,保存在Buffer Pool当中,当我们查询数据时就可以通过查询这棵B+树来提高查询效率。
  • MySQL中可能同时有大量的表正在被处理,因此Buffer Pool中可能会存在多个索引结构,也就是同时存在多个B+树结构,当我们查询表时访问的就是这张表对应的B+树结构。

InnoDB 在建立索引结构来管理数据的时候,其他数据结构为何不行?

  • 链表:线性遍历,查找效率慢。
  • 二叉搜索树:退化问题,可能退化成为线性结构;
  • AVL &&红黑树:虽然是平衡或者近似平衡,但是毕竟是二叉结构,相比较多阶B+,意味着树整体过高,大家都是自顶向下找,层高越低,意味着系统与硬盘更少的IO Page交互。
  • Hash:官方的索引实现方式中, MySQL 是支持HASH的,不过 InnoDB 和 MyISAM 并不支持。Hash跟其算法特征,决定了虽然有时候也很快(O(1)),不过,在面对范围查找就明显不行。

下面是几个常见的存储引擎,与其所支持的索引类型:

存储引擎 支持的索引类型
InnoDB BTREE
MyISAM BTREE
MEMORY/HEAP HASH、BTREE
NDB HASH、BTREE

B树 VS B+树

我们观察上面这两张图就可以发现:

  • B树节点,既有数据,又有Page指针,而B+,只有叶子节点有数据,其他目录页,只有键值和Page指针;
  • B+叶子节点,全部相连,而B没有。

我们选择B+树的原因就在于:

  • 节点不存储data,这样一个节点就可以存储更多的key。可以使得树更矮,所以IO操作次数更少。
  • 叶子节点相连,更便于进行范围查找。

聚簇索引 VS 非聚簇索引

MyISAM 存储引擎-主键索引

MyISAM 引擎同样使用B+树作为索引结果,叶节点的data域存放的是数据记录的地址。下图为 MyISAM表的主索引, Col1 为主键。

MyISAM 最大的特点是,将索引Page和数据Page分离,也就是叶子节点没有数据,只有对应数据的地址。相较于 InnoDB 索引, InnoDB 是将索引和数据放在一起的。

  • MyISAM 这种用户数据与索引数据分离的索引方案,叫做非聚簇索引
  • InnoDB 这种用户数据与索引数据在一起索引方案,叫做聚簇索引

MySQL 除了默认会建立主键索引外,我们用户也有可能建立按照其他列信息建立的索引,一般这种索引可以叫做辅助(普通)索引。

对于 MyISAM ,建立辅助(普通)索引和主键索引没有差别,无非就是主键不能重复,而非主键可重复。

下图就是基于 MyISAM 的 Col2 建立的索引,和主键索引没有差别:

同样, InnoDB 除了主键索引,用户也会建立辅助(普通)索引,我们以上表中的 Col3 建立对应的辅助索引如下图:

可以看到, InnoDB 的非主键索引中叶子节点并没有数据,而只有对应记录的key值。

所以通过辅助(普通)索引,找到目标记录,需要两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录。这种过程,就叫做回表查询。

索引操作

创建主键索引

方式一:在创建表的时候,直接在字段名后指定 primary key

方式二:在创建表的最后,指定某列或某几列为主键索引

方式三:创建表以后再添加主键

主键索引的特点:

  • 一个表中,最多有一个主键索引,当然可以使符合主键;
  • 主键索引的效率高(主键不可重复);
  • 创建主键索引的列,它的值不能为null,且不能重复;
  • 主键索引的列基本上是int。

唯一键索引创建

方式1:在表定义时,在某列后直接指定unique唯一属性

方式2:创建表时,在表的后面指定某列或某几列为unique

创建表后添加唯一键

唯一索引的特点:

  • 一个表中,可以有多个唯一索引;
  • 查询效率高;
  • 如果在某一列建立唯一索引,必须保证这列不能有重复数据;
  • 如果一个唯一索引上指定not null,等价于主键索引。

普通索引的创建

方式1:在表的定义最后,指定某列为索引

方式2:创建完表以后指定某列为普通索引

方式3:创建一个索引名为 idx_name 的索引

普通索引的特点:

  • 一个表中可以有多个普通索引,普通索引在实际开发中用的比较多;
  • 如果某列需要创建索引,但是该列有重复的值,那么我们就应该使用普通索引。

全文索引的创建

当对文章字段或有大量文字的字段进行检索时,会使用到全文索引。MySQL提供全文索引机制,但是有要求,要求表的存储引擎必须是MyISAM,而且默认的全文索引支持英文,不支持中文。如果对中文进行全文检索,可以使用sphinx的中文版(coreseek)。

首先我们创建一个表,然后插入一些数据进行测试:

查询有没有database数据

首先,我们可以通过模糊匹配的方法进行查找。

使用explain语句来进行查看,我们会发现key值为NULL,并没有用到索引。

如果要通过全文索引来查询,需要使用match against进行搜索。

通过explain来分析这个sql语句,会发现就使用了索引。

  • MyISAM存储引擎是支持全文索引的,而InnoDB存储引擎是在5.6以后才开始支持全文索引的。
  • 同时使用title和body建立全文索引时,相当于建立了一个复合索引,默认会选择fulltext中的第一个列名作为这个复合索引的索引名,所以这里explain中key对应的索引名为title。
  • 由于是title和body共同建立的全文索引,所以如果文章当中没有出现关键字,但文章名称中出现了关键字则也会被筛选出来(当前示例没有体现出来)。

查询索引

方式1:show keys from 表名

  • Table: 表示创建索引的表的名称。
  • Non_unique: 表示该索引是否是唯一索引,如果是则为0,如果不是则为1。
  • Key_name: 表示索引的名称。
  • Seq_in_index: 表示该列在索引中的位置,如果索引是单列的,则该列的值为1,如果索引是复合索引,则该列的值为每列在索引定义中的顺序。
  • Column_name: 表示定义索引的列字段。
  • Collation: 表示列以何种顺序存储在索引中,"A"表示升序,NULL表示无分类。
  • Cardinality: 索引中唯一值数目的估计值。基数根据被存储为整数的统计数据计数,所以即使对于小型表,该值也没有必要是精确的。基数越大,当进行联合时,MySQL使用该索引的机会就越大。
  • Sub_part: 表示列中被编入索引的字符的数量,若列只是部分被编入索引,则该列的值为被编入索引的字符的数目,若整列被编入索引,则该列的值为NULL。
  • Packed: 指示关键字如何被压缩。若没有被压缩,则值为NULL。
  • Null: 用于显示索引列中是否包含NULL,若包含则为YES,若不包含则为NO。
  • Index_type: 显示索引使用的类型和方法(BTREE、FULLTEXT、HASH、RTREE)。
  • Comment: 显示评注。

方法2:show index from 表名

方法3:desc 表名

删除索引

首先我们创建一个表,为其添加上主键索引,唯一键索引,普通索引。

删除主键索引

cpp 复制代码
alter table 表名 drop primary key;

删除非主键索引

cpp 复制代码
alter table 表名 drop index 索引名
cpp 复制代码
drop index 索引名 on 表名

索引创建原则

  • 比较频繁作为查询条件的字段应该创建索引;
  • 唯一性太差的字段不适合单独创建索引,即使频繁作为查询条件;
  • 更新非常频繁的字段不适合作创建索引;
  • 不会出现在where子句中的字段不该创建索引。
相关推荐
张声录19 分钟前
【ETCD】【实操篇(十五)】etcd集群成员管理:如何高效地添加、删除与更新节点
数据库·etcd
天乐敲代码10 分钟前
Etcd静态分布式集群搭建
数据库·分布式·etcd
chengma_09090911 分钟前
MySQL 数据库连接数查询、配置
数据库·mysql
林农25 分钟前
C05S14-MySQL高级语句
linux·mysql·云计算
TDengine (老段)38 分钟前
两分钟掌握 TDengine 全部写入方式
大数据·数据库·时序数据库·tdengine·涛思数据
码农君莫笑1 小时前
《信管通低代码信息管理系统开发平台》Windows环境安装说明
服务器·数据库·windows·低代码·c#·bootstrap·.netcore
北欧人写代码1 小时前
MySQL 数据库备份与恢复
mysql
计算机学长felix1 小时前
基于SpringBoot的“大学生社团活动平台”的设计与实现(源码+数据库+文档+PPT)
数据库·spring boot·后端
木与子不厌1 小时前
微服务自定义过滤器
运维·数据库·微服务