开集目标检测-标签提示目标检测大模型(吊打YOLO系列-自动化检测标注)

背景

大多数现有的对象检测模型都经过训练来识别一组有限的预先确定的类别。将新类添加到可识别对象列表中需要收集和标记新数据,并从头开始重新训练模型,这是一个耗时且昂贵的过程。该大模型的目标是开发一个强大的系统来检测由人类语言输入指定的任意对象,而无需重新训练模型,也称为零样本检测。该模型只需提供文本提示即可识别和检测任何物体。

  • 关键可以生成标签,这样也不用标注了
  • 同时能实现任何类别的识别
  • 目标检测功能
  • 学习可用

模型架构

Grounding DINO架构的核心在于它能够有效地弥合语言和视觉之间的差距。这是通过采用双流架构来实现的------使用 Swin Transformer 等文本主干提取多尺度图像特征,并通过 NLP 模型 BERT 等文本主干提取文本特征。

模型架构

这两个流的输出被馈送到特征增强器中,用于将两组特征转换成单个统一的表示空间。特征增强器包括多个特征增强器层。可变形自注意力用于增强图像特征,常规自注意力用于文本特征增强器。

#特征增强层

Groundi旨在从输入文本指定的图像中检测对象。为了有效地利用输入文本进行对象检测,使用语言引导的查询选择来从图像和文本输入中选择最相关的特征。这些查询指导解码器识别图像中对象的位置,并根据文本描述为它们分配适当的标签。

跨模态解码器

然后使用跨模态解码器来集成文本和图像模态特征。跨模态解码器通过一系列关注层和前馈网络处理融合特征和解码器查询来进行操作。这些层允许解码器有效地捕获视觉和文本信息之间的关系,使其能够细化对象检测并分配适当的标签。在此步骤之后,模型继续进行对象检测的最后步骤,包括边界框预测、特定于类的置信度过滤和标签分配。、

代码运行

执行

在下一节中,我们将演示开放集对象检测。在这里,我们将使用预先训练的 Grounding 模型通过摄像头检测"带盖玻璃"(如文本提示)。

安装接地 DINO 🦕

首先,包含 PyTorch 实现和 Grounding 预训练模型的github 存储库被克隆到您的本地目录。在克隆 github 存储库的同一目录中创建一个名为 main.py 的文件。该文件将包含通过摄像头输入执行 Grounding 模型的主脚本。首先通过添加以下命令导入相关库和 Grounding 模块。代码的最后两行导入所需的推理模块。

复制代码
 import modules
import os
import cv2
import numpy as np
from PIL import Image
import groundingdino.datasets.transforms as T
from groundingdino.util.inference import load_model, load_image, predict, annotate

安装环境

复制代码
pip install -r requirements.txt

下载bert-base-uncased

复制代码
https://huggingface.co/models

找到后,下载后放到本地,否则代码会出现异常

运行

复制代码
python demo/inference_on_a_image.py -c 配置文件 Ground/config/Grounding_OGC.py -p 权重:.pth
-i 输入 input -o输出路径 -t "标签:car" --cpu-only

结果



怎么样,结果还不错把

关键可以生成标签,这样也不用标注了

已经把批量生成.json .xml文件脚本完成!

相关推荐
m_136874 小时前
YOLOv8 在 Intel Mac 上的 Anaconda 一键安装教程
yolo·macos
code bean18 小时前
【yolo】YOLOv8 训练模型参数与多机环境差异总结
yolo
arron889919 小时前
yolov8部署在一台无显卡的电脑上,实时性强方案
yolo·电脑
Coovally AI模型快速验证19 小时前
3D目标跟踪重磅突破!TrackAny3D实现「类别无关」统一建模,多项SOTA达成!
人工智能·yolo·机器学习·3d·目标跟踪·无人机·cocos2d
fanstuck20 小时前
2025 年高教社杯全国大学生数学建模竞赛C 题 NIPT 的时点选择与胎儿的异常判定详解(一)
人工智能·目标检测·数学建模·数据挖掘·aigc
菩提树下的凡夫21 小时前
瑞芯微RV1126目标识别算法Yolov8的部署应用
java·算法·yolo
荒野饮冰室1 天前
分类、目标检测、实例分割的评估指标
目标检测·计算机视觉·分类·实例分割
微笑伴你而行1 天前
目标检测如何将同时有方形框和旋转框的json/xml标注转为txt格式
xml·目标检测·json
Coovally AI模型快速验证1 天前
无人机小目标检测新SOTA:MASF-YOLO重磅开源,多模块协同助力精度飞跃
人工智能·yolo·目标检测·机器学习·计算机视觉·无人机
飞翔的佩奇1 天前
【完整源码+数据集+部署教程】骰子点数识别图像实例分割系统源码和数据集:改进yolo11-DCNV2
python·yolo·计算机视觉·数据集·yolo11·骰子点数识别图像实例分割