使用pytorch搭建ResNet并基于迁移学习训练

这里的迁移学习方法是载入预训练权重的方法

python 复制代码
    net = resnet34()
    # load pretrain weights
    # download url: https://download.pytorch.org/models/resnet34-333f7ec4.pth
    model_weight_path = "./resnet34-pre.pth"
    assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)
    net.load_state_dict(torch.load(model_weight_path, map_location='cpu'))
    # for param in net.parameters():
    #     param.requires_grad = False

    # change fc layer structure
    in_channel = net.fc.in_features
    net.fc = nn.Linear(in_channel, 5)

这里的迁移学习方法是载入预训练权重的方法net = resnet34():注意这里没有传入参数num_classes 因为后面才载入所有的参数,会覆盖我们设定的classes

change fc layer structure

in_channel = net.fc.in_features # fc 为全连接层 in_features为特征矩阵的深度

net.fc = nn.Linear(in_channel, 5)

如果不想使用迁移学习的方法,则注释阴影部分,在net = resnet34()中传入num_classes参数

相关推荐
OpenCSG1 小时前
OpenCSG 2025年11月月报:智能体平台、AI技术合作与开源生态进展
人工智能·开源·opencsg·csghub
围炉聊科技1 小时前
当AI成为“大脑”:人类如何在机器时代找到不可替代的价值?
人工智能
لا معنى له1 小时前
残差网络论文学习笔记:Deep Residual Learning for Image Recognition全文翻译
网络·人工智能·笔记·深度学习·学习·机器学习
菜只因C1 小时前
深度学习:从技术本质到未来图景的全面解析
人工智能·深度学习
工业机器视觉设计和实现2 小时前
lenet改vgg训练cifar10突破71分
人工智能·机器学习
咚咚王者2 小时前
人工智能之数据分析 Matplotlib:第四章 图形类型
人工智能·数据分析·matplotlib
TTGGGFF2 小时前
人工智能:用Gemini 3一键生成3D粒子电子手部映射应用
人工智能·3d·交互
LitchiCheng2 小时前
Mujoco 基础:获取模型中所有 body 的 name, id 以及位姿
人工智能·python
Allen_LVyingbo2 小时前
面向医学影像检测的深度学习模型参数分析与优化策略研究
人工智能·深度学习
CareyWYR2 小时前
每周AI论文速递(251124-251128)
人工智能