使用pytorch搭建ResNet并基于迁移学习训练

这里的迁移学习方法是载入预训练权重的方法

python 复制代码
    net = resnet34()
    # load pretrain weights
    # download url: https://download.pytorch.org/models/resnet34-333f7ec4.pth
    model_weight_path = "./resnet34-pre.pth"
    assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)
    net.load_state_dict(torch.load(model_weight_path, map_location='cpu'))
    # for param in net.parameters():
    #     param.requires_grad = False

    # change fc layer structure
    in_channel = net.fc.in_features
    net.fc = nn.Linear(in_channel, 5)

这里的迁移学习方法是载入预训练权重的方法net = resnet34():注意这里没有传入参数num_classes 因为后面才载入所有的参数,会覆盖我们设定的classes

change fc layer structure

in_channel = net.fc.in_features # fc 为全连接层 in_features为特征矩阵的深度

net.fc = nn.Linear(in_channel, 5)

如果不想使用迁移学习的方法,则注释阴影部分,在net = resnet34()中传入num_classes参数

相关推荐
放氮气的蜗牛17 小时前
从头开始学习AI:第五章 - 多分类与正则化技术
人工智能·学习·分类
Black蜡笔小新17 小时前
终结“监控盲区”:EasyGBS视频质量诊断技术多场景应用设计
人工智能·音视频·视频质量诊断
聊聊科技17 小时前
打破固化编曲思维,AI编曲软件为原创音乐人注入制作歌曲伴奏新创意
人工智能
智驱力人工智能17 小时前
货车违规变道检测 高速公路安全治理的工程实践 货车变道检测 高速公路货车违规变道抓拍系统 城市快速路货车压实线识别方案
人工智能·opencv·算法·安全·yolo·目标检测·边缘计算
乾元17 小时前
实战案例:解析某次真实的“AI vs. AI”攻防演练
运维·人工智能·安全·web安全·机器学习·架构
AiTop10018 小时前
智谱开源GLM-OCR:0.9B小模型在复杂文档处理登顶SOTA
人工智能·ai·aigc
晓晓不觉早18 小时前
OpenAI Codex App的推出:多代理工作流的新时代
人工智能·gpt
大数据在线18 小时前
硬件涨价超级周期:智算中心价值逻辑迎来重构
人工智能·数据中心·智算中心·内存涨价·曙光存储
7***n7518 小时前
2026年AI搜索时代的品牌显性化挑战与微盟星启解决方案解析
人工智能
Loacnasfhia918 小时前
卷烟爆珠气泡缺陷检测与分类_YOLO11创新点改进_C3k2与MLCA模块融合结构研究_1
人工智能·目标跟踪·分类