YOLO训练results.csv文件可视化(原模型与改进模型对比可视化)

一、单独一个文件可视化(源码对应utils文件夹下的plots.py文件的plot_results类)

python 复制代码
from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
def plot_results(file='runs/train/exp9/results.csv', dir=''):
    # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
    save_dir = Path(file).parent if file else Path(dir)
    fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
    ax = ax.ravel()
    files = list(save_dir.glob(file))
    assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
    for fi, f in enumerate(files):
        try:
            data = pd.read_csv(f)
            s = [x.strip() for x in data.columns]
            x = data.values[:, 0]
            for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
                y = data.values[:, j]
                # y[y == 0] = np.nan  # don't show zero values
                ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
                ax[i].set_title(s[j], fontsize=12)
                # if j in [8, 9, 10]:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except Exception as e:
            print(f'Warning: Plotting error for {f}: {e}')
    ax[1].legend()
    fig.savefig(save_dir / 'results.png', dpi=200)  #修改保存路径
    plt.close()
 
 
if __name__ == '__main__':
    plot_results(file='results.csv')   #该python文件位于根目录下(此文件和传入文件在同一目录下),注意修改传入文件路径

单独把代码拿出来建立py文件,注意上传文件路径以及文件保存路径。

效果图展示:(results.png文件)

二、两个results.csv文件对比(经常用于原模型与改进模型训练效果对比):

这里用到了两个csv文件(results.csv(改进模型训练80轮)和results100.csv(原模型训练100轮))

python 复制代码
from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
def plot_results(file='runs/train/exp9/results.csv', file2='runs/train/exp9/results100.csv' , dir=''):
    # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
    save_dir = Path(file).parent if file else Path(dir)
    save_dir2 = Path(file2).parent if file2 else Path(dir)
    fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
    ax = ax.ravel()
    files = list(save_dir.glob(file))
    assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
    files2 = list(save_dir2.glob(file2))
    assert len(files2), f'No results.csv files found in {save_dir2.resolve()}, nothing to plot.'
    for fi, f in enumerate(files):
        try:
            data = pd.read_csv(f)
            s = [x.strip() for x in data.columns]
            x = data.values[:, 0]
            for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
                y = data.values[:, j]
                # y[y == 0] = np.nan  # don't show zero values
                ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
                ax[i].set_title(s[j], fontsize=12)
                # if j in [8, 9, 10]:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except Exception as e:
            print(f'Warning: Plotting error for {f}: {e}')
    for fi, f in enumerate(files2):
        try:
            data = pd.read_csv(f)
            s = [x.strip() for x in data.columns]
            x = data.values[:, 0]
            for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
                y = data.values[:, j]
                # y[y == 0] = np.nan  # don't show zero values
                ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
                ax[i].set_title(s[j], fontsize=12)
                # if j in [8, 9, 10]:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except Exception as e:
            print(f'Warning: Plotting error for {f}: {e}')
    ax[1].legend()
    fig.savefig(save_dir / 'results_vs.png', dpi=200)  #修改保存路径
    plt.close()
 
 
if __name__ == '__main__':
    plot_results(file='results.csv',file2='results100.csv')   #该python文件位于根目录下(此文件和传入文件在同一目录下),注意修改传入文件路径

效果图展示:(results_vs.png文件)

搬运自YOLO训练results.csv文件可视化(原模型与改进模型对比可视化)

相关推荐
忧郁的蛋~1 分钟前
使用.NET标准库实现多任务并行处理的详细过程
开发语言·c#·.net
dragon_perfect9 分钟前
全流程基于Yolov8实现在Label-Studio实现半自动标注,已经把整个流程理清楚,把所有的坑解决。
开发语言·python·yolo·labelstudio
kalvin_y_liu14 分钟前
四款主流深度相机在Python/C#开发中的典型案例及技术实现方案
开发语言·python·数码相机
劲镝丶15 分钟前
malloc概述
c语言·开发语言·c++
AI Echoes23 分钟前
LLMOps平台:开源项目LMForge = GPTs + Coze
人工智能·python·langchain·开源·agent
王伯安呢24 分钟前
Python实战:爬取百度热搜榜,制作动态可视化报告
python·百度·中文分词·jieba·新手教程·技术教程
SUNxRUN33 分钟前
【Python - 类库 - PyMySQL】(02)使用“PyMySQL“插入变量
python·pymysql
1373i1 小时前
【Python】pytorch数据操作
开发语言·pytorch·python
努力努力再努力wz1 小时前
【C++进阶系列】:万字详解红黑树(附模拟实现的源码)
java·linux·运维·c语言·开发语言·c++
枫fengw1 小时前
9.8 C++
开发语言·c++