np.copy()是深拷贝还是浅拷贝

np.copy到底是深拷贝还是浅拷贝

  • 实验
    • [1. 拷贝矩阵](#1. 拷贝矩阵)
      • [2. 修改m的值](#2. 修改m的值)
      • [3. 修改拷贝矩阵的值](#3. 修改拷贝矩阵的值)
  • 官方文档

最近在用numpy的拷贝操作,发现网上对np.copy()究竟是深拷贝还是浅拷贝说法不一致,因此记录一下。

总结 :如果numpy array是一个简单的数组,np.copy()是深拷贝。如果numpy array内包含了对象,np.copy()是浅拷贝。
ps : arr.copy = np.copy(arr)

实验

1. 拷贝矩阵

原始矩阵m,分别用两种不同的方式拷贝。用np.copy()得到n, 用浅拷贝得到z

python 复制代码
import numpy as np
m = np.array([[0,1,2],[1,2,3],[3,4,5]])
# numpy拷贝, 等同于n = np.copy(m)
n = m.copy()
# 浅拷贝
z = m

输出:

python 复制代码
>>> m
array([[0, 1, 2],
       [1, 2, 3],
       [3, 4, 5]])
>>> n
array([[0, 1, 2],
       [1, 2, 3],
       [3, 4, 5]])
>>> z
array([[0, 1, 2],
       [1, 2, 3],
       [3, 4, 5]])

2. 修改m的值

python 复制代码
m[0][0]=-1

修改m的值后,使用np.copy的n值没有改变,浅拷贝z的值发生了改变

python 复制代码
>>> m
array([[-1,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])
>>> n
array([[0, 1, 2],
       [1, 2, 3],
       [3, 4, 5]])
>>> z
array([[-1,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])

3. 修改拷贝矩阵的值

修改n的值,mz值都没有改变

python 复制代码
n[0][0]=-2

>>> m
array([[-1,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])
>>> n
array([[-2,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])
>>> z
array([[-1,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])

修改z的值,m值改变和n值不变

python 复制代码
z[0][0]=-3

array([[-3,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])
>>> n
array([[-2,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])
>>> z
array([[-3,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])

因此np.copy从以上的例子来看是深拷贝, =是浅拷贝

官方文档

但是在 numpy官方文档中明确提到np.copy是浅拷贝。原因是如果array里的元素是一个对象时,如果对象的元素改变,原来的array的对象也会改变。也就是说numpy array中对象元素的拷贝是浅拷贝。

Note that np.copy is a shallow copy and will not copy object elements within arrays. This is mainly important for arrays containing Python objects. The new array will contain the same object which may lead to surprises if that object can be modified (is mutable):

复制代码
a = np.array([1, 'm', [2, 3, 4]], dtype=object)
b = np.copy(a)
b[2][0] = 10
a
array([1, 'm', list([10, 3, 4])], dtype=object)

To ensure all elements within an object array are copied, use copy.deepcopy:

复制代码
import copy
a = np.array([1, 'm', [2, 3, 4]], dtype=object)
c = copy.deepcopy(a)
c[2][0] = 10
c
array([1, 'm', list([10, 3, 4])], dtype=object)
a
array([1, 'm', list([2, 3, 4])], dtype=object)

参考文档

  1. 官方文档
  2. 博客1
  3. 博客2
相关推荐
Coinsheep3 分钟前
SSTI-flask靶场搭建及通关
python·flask·ssti
IT实战课堂小元酱4 分钟前
大数据深度学习|计算机毕设项目|计算机毕设答辩|flask露天矿爆破效果分析系统开发及应用
人工智能·python·flask
码农阿豪5 分钟前
Flask应用上下文问题解析与解决方案:从错误日志到完美修复
后端·python·flask
wqq63108557 分钟前
Python基于Vue的实验室管理系统 django flask pycharm
vue.js·python·django
Q_Q19632884759 分钟前
python大学生爱心校园互助代购网站_nyvlx_django Flask vue pycharm项目
python·django·flask
码农阿豪11 分钟前
Python Flask应用中文件处理与异常处理的实践指南
开发语言·python·flask
xcLeigh12 分钟前
Python 项目实战:用 Flask 实现 MySQL 数据库增删改查 API
数据库·python·mysql·flask·教程·python3
威迪斯特13 分钟前
Flask:轻量级Web框架的技术本质与工程实践
前端·数据库·后端·python·flask·开发框架·核心架构
独好紫罗兰32 分钟前
对python的再认识-基于数据结构进行-a003-列表-排序
开发语言·数据结构·python
AIFarmer40 分钟前
在EV3上运行Python语言——无线编程
python·ev3