np.copy()是深拷贝还是浅拷贝

np.copy到底是深拷贝还是浅拷贝

  • 实验
    • [1. 拷贝矩阵](#1. 拷贝矩阵)
      • [2. 修改m的值](#2. 修改m的值)
      • [3. 修改拷贝矩阵的值](#3. 修改拷贝矩阵的值)
  • 官方文档

最近在用numpy的拷贝操作,发现网上对np.copy()究竟是深拷贝还是浅拷贝说法不一致,因此记录一下。

总结 :如果numpy array是一个简单的数组,np.copy()是深拷贝。如果numpy array内包含了对象,np.copy()是浅拷贝。
ps : arr.copy = np.copy(arr)

实验

1. 拷贝矩阵

原始矩阵m,分别用两种不同的方式拷贝。用np.copy()得到n, 用浅拷贝得到z

python 复制代码
import numpy as np
m = np.array([[0,1,2],[1,2,3],[3,4,5]])
# numpy拷贝, 等同于n = np.copy(m)
n = m.copy()
# 浅拷贝
z = m

输出:

python 复制代码
>>> m
array([[0, 1, 2],
       [1, 2, 3],
       [3, 4, 5]])
>>> n
array([[0, 1, 2],
       [1, 2, 3],
       [3, 4, 5]])
>>> z
array([[0, 1, 2],
       [1, 2, 3],
       [3, 4, 5]])

2. 修改m的值

python 复制代码
m[0][0]=-1

修改m的值后,使用np.copy的n值没有改变,浅拷贝z的值发生了改变

python 复制代码
>>> m
array([[-1,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])
>>> n
array([[0, 1, 2],
       [1, 2, 3],
       [3, 4, 5]])
>>> z
array([[-1,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])

3. 修改拷贝矩阵的值

修改n的值,mz值都没有改变

python 复制代码
n[0][0]=-2

>>> m
array([[-1,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])
>>> n
array([[-2,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])
>>> z
array([[-1,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])

修改z的值,m值改变和n值不变

python 复制代码
z[0][0]=-3

array([[-3,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])
>>> n
array([[-2,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])
>>> z
array([[-3,  1,  2],
       [ 1,  2,  3],
       [ 3,  4,  5]])

因此np.copy从以上的例子来看是深拷贝, =是浅拷贝

官方文档

但是在 numpy官方文档中明确提到np.copy是浅拷贝。原因是如果array里的元素是一个对象时,如果对象的元素改变,原来的array的对象也会改变。也就是说numpy array中对象元素的拷贝是浅拷贝。

Note that np.copy is a shallow copy and will not copy object elements within arrays. This is mainly important for arrays containing Python objects. The new array will contain the same object which may lead to surprises if that object can be modified (is mutable):

a = np.array([1, 'm', [2, 3, 4]], dtype=object)
b = np.copy(a)
b[2][0] = 10
a
array([1, 'm', list([10, 3, 4])], dtype=object)

To ensure all elements within an object array are copied, use copy.deepcopy:

import copy
a = np.array([1, 'm', [2, 3, 4]], dtype=object)
c = copy.deepcopy(a)
c[2][0] = 10
c
array([1, 'm', list([10, 3, 4])], dtype=object)
a
array([1, 'm', list([2, 3, 4])], dtype=object)

参考文档

  1. 官方文档
  2. 博客1
  3. 博客2
相关推荐
CriticalThinking13 分钟前
Pycharm不正常识别包含中文路径的解释器
ide·python·pycharm
sin220139 分钟前
springboot数据校验报错
spring boot·后端·python
eric-sjq1 小时前
基于xiaothink对Wanyv-50M模型进行c-eval评估
人工智能·python·语言模型·自然语言处理·github
是十一月末1 小时前
机器学习之KNN算法预测数据和数据可视化
人工智能·python·算法·机器学习·信息可视化
工业互联网专业1 小时前
基于OpenCV和Python的人脸识别系统_django
人工智能·python·opencv·django·毕业设计·源码·课程设计
杜小白也想的美2 小时前
FlaskAPI-初识
python·fastapi
一只搬砖的猹2 小时前
cJson系列——常用cJson库函数
linux·前端·javascript·python·物联网·mysql·json
CodeClimb2 小时前
【华为OD-E卷-租车骑绿道 100分(python、java、c++、js、c)】
java·javascript·c++·python·华为od
CodeClimb2 小时前
【华为OD-E卷-MVP争夺战 100分(python、java、c++、js、c)】
java·python·华为od
大霸王龙2 小时前
项目管理咨询公司专注于为各类项目提供全方位的管理咨询服务
python·django