基于FPGA的图像Robert变换实现,包括tb测试文件和MATLAB辅助验证

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

fpga的结果导入到matlab显示:

2.算法运行软件版本

vivado2019.2

matlab2022a

3.部分核心程序

复制代码
.......................................................................
module test_image;

reg i_clk;
reg i_rst;
reg [7:0] Buffer [0:100000];
reg [7:0] II;
wire [7:0] o_robert;
integer fids,idx=0,dat;
 
 
//D:\FPGA_Proj\FPGAtest\codepz\project_1\project_1.srcs\sources_1
initial 
begin
	fids = $fopen("D:\\FPGA_Proj\\FPGAtest\\codepz\\test0.bmp","rb");
	dat  = $fread(Buffer,fids);
	$fclose(fids);
end
 
 
 
initial 
begin
i_clk=1;
i_rst=1;
#1000;
i_rst=0;
end 

always #5 i_clk=~i_clk;
 
always@(posedge i_clk) 
begin
	II<=Buffer[idx];
	idx<=idx+1;
end
 

tops tops_u(
.i_clk    (i_clk),
.i_rst    (i_rst),
.i_I      (II),
.o_robert   (o_robert)
);

integer fout1;
initial begin
 fout1 = $fopen("SAVEDATA.txt","w");
end

always @ (posedge i_clk)
 begin
    if(idx<=66623)
	$fwrite(fout1,"%d\n",o_robert);
	else
	$fwrite(fout1,"%d\n",0);
end

endmodule
0X_025m

4.算法理论概述

随着数字图像处理技术的不断发展,边缘检测作为图像处理的基本操作,其在机器视觉、自动驾驶、医学影像分析等领域的应用日益广泛。Robert交叉梯度算子是一种常用的边缘检测方法,具有简单、快速的特点。本文将详细介绍基于FPGA的Robert交叉梯度算子实现原理,包括算法原理、FPGA设计流程、实验结果与分析等。

Robert交叉梯度算子是一种基于一阶微分的边缘检测方法,它通过计算图像中每个像素点在两个正交方向上的灰度差来检测边缘。具体地,对于图像中的每个像素点(P(x,y)),其Robert交叉梯度定义为:

(G_x = P(x,y) - P(x+1,y+1))

(G_y = P(x+1,y) - P(x,y+1))

其中,(G_x)和(G_y)分别表示像素点在水平和垂直方向上的灰度差。然后,可以根据梯度幅度和方向来判断像素点是否属于边缘:

(G = \sqrt{G_x^2 + G_y^2})

其中,(G)表示梯度幅度。通常可以设定一个阈值,当梯度幅度大于该阈值时,认为像素点属于边缘。

基于FPGA的Robert交叉梯度算子实现主要包括以下几个步骤:图像数据输入、灰度化处理、Robert交叉梯度计算、边缘检测和结果输出。下面将详细介绍每个步骤的实现原理。

1 图像数据输入

首先,需要将待处理的图像数据输入到FPGA中。可以通过外部存储器(如SDRAM)或摄像头等设备将图像数据传输到FPGA的片上存储器中。在FPGA内部,可以使用FIFO(First In First Out)等缓冲结构来暂存图像数据,以确保数据的连续性和稳定性。

2 Robert交叉梯度计算

在灰度化处理后,接下来进行Robert交叉梯度的计算。根据Robert算子的定义,需要计算每个像素点在水平和垂直方向上的灰度差。在FPGA中,可以使用相邻像素的并行访问和计算来实现这一步骤。具体地,可以设计一个计算单元,该单元同时读取当前像素和其相邻像素的灰度值,并计算出水平和垂直方向上的灰度差。然后,根据灰度差计算出梯度幅度和方向。

3 边缘检测

在计算出梯度幅度和方向后,需要进行边缘检测。可以根据设定的阈值来判断每个像素点是否属于边缘。如果梯度幅度大于阈值,则将该像素点标记为边缘点;否则,标记为非边缘点。在FPGA实现中,可以使用比较器等逻辑电路来实现阈值判断和边缘标记。

4 结果输出

最后,将边缘检测的结果输出到外部设备或存储器中。可以将边缘标记的图像数据通过FIFO等缓冲结构输出到外部接口,以供后续处理或显示使用。同时,也可以将处理过程中的一些统计信息(如边缘点的数量、处理时间等)输出到外部接口,以供性能分析和优化使用。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
2501_944521594 分钟前
Flutter for OpenHarmony 微动漫App实战:推荐动漫实现
android·开发语言·前端·javascript·flutter·ecmascript
不绝1918 分钟前
C#进阶:委托
开发语言·c#
喜欢喝果茶.8 分钟前
跨.cs 文件传值(C#)
开发语言·c#
zmzb010313 分钟前
C++课后习题训练记录Day74
开发语言·c++
小冷coding21 分钟前
【Java】Dubbo 与 OpenFeign 的核心区别
java·开发语言·dubbo
Coder_Boy_25 分钟前
基于SpringAI的在线考试系统-智能考试系统-学习分析模块
java·开发语言·数据库·spring boot·ddd·tdd
2401_8948281238 分钟前
从原理到实战:随机森林算法全解析(附 Python 完整代码)
开发语言·python·算法·随机森林
玄同76538 分钟前
Python「焚诀」:吞噬所有语法糖的终极修炼手册
开发语言·数据库·人工智能·python·postgresql·自然语言处理·nlp
羽翼.玫瑰40 分钟前
关于重装Python失败(本质是未彻底卸载Python)的问题解决方案综述
开发语言·python
Evand J41 分钟前
【MATLAB例程】雷达测距+测角的二维定位,基于CV运动的EKF和RTS平滑。滤波与平滑后的结果对比、误差分析。附例程
matlab·ekf·扩展卡尔曼滤波·rts平滑