SparkSQL执行过程
逻辑计划
逻辑计划阶段会将用户所写的 SQL语句转换成树型数据结构(逻辑算子树 ), SQL语句中蕴含的逻辑映射到逻辑算子树的不同节点。 顾名思义,逻辑计划阶段生成的逻辑算子树并不会直接提交执行,仅作为中间阶段 。 最终逻辑算子树的生成过程经历 3 个子阶段,分别对应未解析的逻辑算子树 ( Unresolved LogicalPlan,仅仅是数据结构,不包含任何数据信息等 )、解析 后的逻辑算子树 ( Analyzed LogicalPlan,节点中绑定各种信息)和优化后的逻辑算子树(Optimized LogicalPlan,应用各种优化规则对一 些低效的逻辑计划进行转换) 。
Spark SQL 逻辑计划在实现层面被定义为 LogicalPlan 类。 从 SQL 语句经过 SparkSqlParser 解析生成 Unresolved LogicalPlan,到最终优化成为 Optimized LogicalPlan,这个流程主要经过 3 个阶段,如上图所示。 这 3 个阶段分别产生 Unresolved LogicalPlan, Analyzed LogicalPlan 和 Optimized LogicalPlan,其中 OptimizedLogicalPlan传递到下一个阶段用于物理执行计划的生戚。
具体来讲,这 3 个阶段所完成的工作分别如下 。
(1)由 SparkSqlParser 中的 AstBuilder执行节点访问,将语法树的各种Context节点转换成对应的 LogicalPlan 节点,从而成为一棵未解析的逻辑算子树(Unresolved LogicalPlan),此时的逻辑算子树是最初形态,不包含数据信息与列信息等。
(2)由 Analyzer将一系列的规则作用在 Unresolved LogicalPlan 上,对树上的节点绑定各种数据信息,生成解析后的逻辑算子树(Analyzed LogicalPlan)。
(3)由 SparkSQL中的优化器(Optimizer)将一系列优化规则作用到上一步生成的逻辑算子树中,在确保结果正确的前提下改写其中的低效结构,生成优化后的逻辑算子树(Optimized LogicalPlan) 。
Optimizer 优化举例:
-
ReplaceDistinctWithAggregate:该优化规则会将 Distinct算子转换为 Aggregate语句 。 在某 些 SQL 语句中, Select直接进行 Distinct操作,这种情况下可以将其直接转换为聚合操作。 ReplaceDistinctWithAggregate规则会将Distinct算子替换为对应的GroupBy语句。
-
Batch Operator Optimizations:类似 Analyzer 中的 Operator解析规则,该 Batch包含了 Optimizer 中数量最多同时也是最常用的各种优化规则,共 31 条 。 从整体来看,这 31 条优化规则(如表 5.4 所示)可以分为 3 个 模块:算子下推( Operator Push Down)、算子组合( Operator Combine)、常量折叠与长度削减 (Constant Folding and Strength Reduction) 。
-
EXISTS和NOTEXISTS算子分别对应semi和anti类型的Join,过滤条件会被当作Join的条件; IN 和 NOT IN 也分别对应 semi 和 anti 类型的 Join。
物理计划
物理计划阶段将上一步逻辑计划阶段生成的逻辑算子树 进行进一步转换,生成物理算子树。 物理算子树的节点会直接生成 RDD 或对 RDD 进行 transformation 操作(注:每个物理计划节点中都实现了对 RDD 进行转换的 execute 方法) 。 同样地,物理计划阶段也包含 3 个子阶段:首 先,根据逻辑算子树,生成物理算子树的列表 Iterator[PhysicalPlan] (同样的逻辑算子树可能对 应多个物理算子树);然后,从列表中按照一定的策略选取最优的物理算子树(SparkPlan);最 后,对选取的物理算子树进行提交前的准备工作,例如,确保分区操作正确、物理算子树节点 重用、执行代码生成等,得到"准备后"的物理算子树(PreparedSparkPlan)。 经过上述步骤后,物理算子树生成的 RDD 执行 action操作(如例子中的 show),即可提交执行 。
从 SQL语句的解析一直到提交之前,上述整个转换过程都在 Spark集群的 Driver端进行, 不涉及分布式环境 。 SparkSession 类的 sql方法调用 SessionState 中的各种对象 ,包括上述不同阶段对应的 SparkSqlParser类、 Analyzer类、 Optimizer类和 SparkPlanner类等 ,最后封装成一个 QueryExecution对象。 因此,在进行 SparkSQL开发时,可以很方便地将每一步生成的计划单独剥离出来分析 。
回到前面的案例, SQL语句较为简单(不包含 Join 和 Aggregation 等操作),因此其转换过程也相对简单。 如图下图所示,左上角是 SQL 语句,生成的逻辑算子树中有 Relation、 Filter 和 Project节点,分别对应数据表、过滤逻辑(age>l8)和列剪裁逻辑 (只涉及3列中的2列)。 下一步的物理算子树从逻辑算子树一对一映射得到, Relation逻辑节点转换为 FileSourceScanExec 执行节点,Project逻辑节点转换为 FilterExec执行节点, Project逻辑节点转换为 ProjectExec执行节点。
生成的物理算子树根节点是 ProjectExec,每个物理节点中的 execute 函数都是执行调用接口,由根节点开始递归调用,从叶子节点开始执行。上图下方展示了物理算子树的执行逻辑,与直接采用 RDD进行编程类似。需要注意的是,FileSourceScanExec叶子执行节点中需要构造数据源对应的 RDD, FilterExec 和 ProjectExec 中的 execute 函数对 RDD 执行相应的transformation 操作。
总的来看, SQL转换为RDD在流程上比较清晰。 虽然实际生产环境中的SQL语句非常复杂,涉及的映射操作也比较烦琐,但总体上仍然遵循上述步骤。
(1)由 SparkPlanner 将各种物理计划策略( Strategy)作用于对应的 LogicalPlan 节点上,生成 SparkPlan列表(注: 一个 LogicalPlan可能产生多种 SparkPlan)。
(2)选取最佳的 SparkPlan,在 Spark2.1 版本中的实现较为简单,在候选列表中直接用 next() 方法获取第一个。
(3)提交前进行准备工作,进行一些分区排序方面的处理,确保 SparkPlan各节点能够正确执行,这一步通过 prepareForExecution()方法调用若干规则(Rule)进行转换。
类继承关系
行数据
TreeNode