论文阅读——UniRepLKNet

UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition

当我们将一个3×3的conv添加到一个小卷积核ConvNet中时,我们预计它会同时产生三种效果------1)使感受野更大,2)增加空间模式的抽象层次(例如,从角度和纹理到对象的形状),3)通过使其更深入,引入更多可学习的参数和非线性,来提高模型的一般表示能力。相比之下,我们认为,在大卷积核架构中,这三种影响应该解耦,因为模型应该利用大卷积核的实质性优势------即不深入就可以看到广泛的东西。由于在扩大感受野时,增加卷积核大小比堆叠更多层要有效得多,因此可以用少量的大卷积核层来建立足够的ERF,从而可以为其他有效结构节省计算预算,这些结构在增加空间模式的抽象层次或通常增加深度方面更有效。

Dilated Reparam Block

膨胀卷积中忽略输入的像素相当于将额外的零项插入到conv卷积核中,因此具有小卷积核的膨胀conv层可以等效地转换为具有稀疏较大内核的非膨胀(即,r=1)层。

原来的卷积核:

插零后:

可以通过步长为r的转置卷积实现:

Reparam块,它使用一个非膨胀的小卷积核和多个膨胀的小卷积核层来增强非膨胀的大卷积核conv层。大核大小K,平行的卷积层大小k,膨胀率r,

另外设计了四个结构加深模型:

不同卷积核:

不同模块:

不同大小模型:

在不同任务的表现:

相关推荐
davysiao9 分钟前
AG-UI 协议:重构多模态交互,开启智能应用新纪元
人工智能
沃洛德.辛肯12 分钟前
PyTorch 的 F.scaled_dot_product_attention 返回Nan
人工智能·pytorch·python
sy_cora37 分钟前
IEEE 列表会议第五届机器人、自动化与智能控制国际会议
运维·人工智能·机器人·自动化
吹风看太阳41 分钟前
机器学习08-损失函数
人工智能·机器学习
m0_7401546743 分钟前
《k-means 散点图可视化》实验报告
人工智能·机器学习·kmeans
zhz521443 分钟前
AI数字人融合VR全景:开启未来营销与交互新篇章
人工智能·ai·交互·vr·ai编程·智能体
智源研究院官方账号1 小时前
智源联合南开大学开源Chinese-LiPS中文多模态语音识别数据集
人工智能·语音识别
Thomas_YXQ1 小时前
Unity3D Overdraw性能优化详解
开发语言·人工智能·性能优化·unity3d
家庭云计算专家1 小时前
还没用过智能文档编辑器吗?带有AI插件的ONLYOFFICE介绍
服务器·人工智能·docker·容器·编辑器
ayiya_Oese2 小时前
[训练和优化] 3. 模型优化
人工智能·python·深度学习·神经网络·机器学习