在pytorch中,读取GPU上张量的数值 (数据从GPU到CPU) 的几种常用方法

1、.cpu() 方法:

使用 .cpu() 方法可以将张量从 GPU 移动到 CPU。这是一种简便的方法,常用于在进行 CPU 上的操作之前将数据从 GPU 取回

python 复制代码
import torch

# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')

# 将 GPU 上的张量移动到 CPU
cpu_tensor = gpu_tensor.cpu()


# 打印输出
print("GPU Tensor:", gpu_tensor)
print("CPU Tensor:", cpu_tensor)
python 复制代码
GPU Tensor: tensor([1,2,3],device='cuda:')
CPU Array: tensor([1,2,3])

2、.to('cpu') 方法:

使用 .to('cpu') 方法也可以将张量移动到 CPU。这是一个通用的设备转移方法,可以指定目标设备和其他参数。

python 复制代码
import torch

# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')

# 将 GPU 上的张量移动到 CPU
cpu_tensor = gpu_tensor.to('cpu')

# 打印输出
print("GPU Tensor:", gpu_tensor)
print("CPU Tensor:", cpu_tensor)
python 复制代码
GPU Tensor: tensor([1,2,3],device='cuda:')
CPU Array: tensor([1,2,3])

3、.numpy() 方法:

使用 .numpy() 方法将 GPU 上的张量转换为 NumPy 数组。这个方法实际上是先将张量移动到 CPU,然后转换为 NumPy 数组。

python 复制代码
import torch

# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')

# 将 GPU 上的张量移动到 CPU,并转换为 NumPy 数组
cpu_array = gpu_tensor.cpu().numpy()

# 打印输出
print("GPU Tensor:", gpu_tensor)
print("CPU Array:", cpu_array)
python 复制代码
GPU Tensor: tensor([1,2,3],device='cuda:')
CPU Array: array([1,2,3])

4、.tolist() 方法:

使用 .tolist() 方法将张量转换为 Python 列表。

python 复制代码
import torch

# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')

# 将张量转换为 Python 列表
python_list = gpu_tensor.tolist()

# 打印输出
print("GPU Tensor:",gpu_tensor)
print("\nPython_list:",python_list)
python 复制代码
GPU Tensor: tensor([1,2,3],device='cuda:')
Python_list: [1,2,3]

5、.item() 方法:

如果张量只包含一个元素,可以使用 .item() 方法直接获取该元素的 Python 数值。

python 复制代码
import torch

# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor(3, device='cuda')

# 获取张量的数值
value = gpu_tensor.item()

# 打印输出
print("GPU Tensor:", gpu_tensor)
print("Value:", value)
python 复制代码
GPU Tensor: tensor(3,device='cuda:')
Value: 3
相关推荐
多米Domi01115 分钟前
0x3f 第49天 面向实习的八股背诵第六天 过了一遍JVM的知识点,看了相关视频讲解JVM内存,垃圾清理,买了plus,稍微看了点确定一下方向
jvm·数据结构·python·算法·leetcode
人工智能训练6 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
yaoming1686 小时前
python性能优化方案研究
python·性能优化
源于花海6 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
码云数智-大飞7 小时前
使用 Python 高效提取 PDF 中的表格数据并导出为 TXT 或 Excel
python
DisonTangor8 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19828 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了8 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
biuyyyxxx8 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
数智联AI团队8 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源