在pytorch中,读取GPU上张量的数值 (数据从GPU到CPU) 的几种常用方法

1、.cpu() 方法:

使用 .cpu() 方法可以将张量从 GPU 移动到 CPU。这是一种简便的方法,常用于在进行 CPU 上的操作之前将数据从 GPU 取回

python 复制代码
import torch

# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')

# 将 GPU 上的张量移动到 CPU
cpu_tensor = gpu_tensor.cpu()


# 打印输出
print("GPU Tensor:", gpu_tensor)
print("CPU Tensor:", cpu_tensor)
python 复制代码
GPU Tensor: tensor([1,2,3],device='cuda:')
CPU Array: tensor([1,2,3])

2、.to('cpu') 方法:

使用 .to('cpu') 方法也可以将张量移动到 CPU。这是一个通用的设备转移方法,可以指定目标设备和其他参数。

python 复制代码
import torch

# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')

# 将 GPU 上的张量移动到 CPU
cpu_tensor = gpu_tensor.to('cpu')

# 打印输出
print("GPU Tensor:", gpu_tensor)
print("CPU Tensor:", cpu_tensor)
python 复制代码
GPU Tensor: tensor([1,2,3],device='cuda:')
CPU Array: tensor([1,2,3])

3、.numpy() 方法:

使用 .numpy() 方法将 GPU 上的张量转换为 NumPy 数组。这个方法实际上是先将张量移动到 CPU,然后转换为 NumPy 数组。

python 复制代码
import torch

# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')

# 将 GPU 上的张量移动到 CPU,并转换为 NumPy 数组
cpu_array = gpu_tensor.cpu().numpy()

# 打印输出
print("GPU Tensor:", gpu_tensor)
print("CPU Array:", cpu_array)
python 复制代码
GPU Tensor: tensor([1,2,3],device='cuda:')
CPU Array: array([1,2,3])

4、.tolist() 方法:

使用 .tolist() 方法将张量转换为 Python 列表。

python 复制代码
import torch

# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')

# 将张量转换为 Python 列表
python_list = gpu_tensor.tolist()

# 打印输出
print("GPU Tensor:",gpu_tensor)
print("\nPython_list:",python_list)
python 复制代码
GPU Tensor: tensor([1,2,3],device='cuda:')
Python_list: [1,2,3]

5、.item() 方法:

如果张量只包含一个元素,可以使用 .item() 方法直接获取该元素的 Python 数值。

python 复制代码
import torch

# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor(3, device='cuda')

# 获取张量的数值
value = gpu_tensor.item()

# 打印输出
print("GPU Tensor:", gpu_tensor)
print("Value:", value)
python 复制代码
GPU Tensor: tensor(3,device='cuda:')
Value: 3
相关推荐
御承扬10 小时前
编程素养提升之EffectivePython(Builder篇)
python·设计模式·1024程序员节
chenchihwen11 小时前
AI代码开发宝库系列:FAISS向量数据库
数据库·人工智能·python·faiss·1024程序员节
张登杰踩11 小时前
工业产品表面缺陷检测方法综述:从传统视觉到深度学习
人工智能·深度学习
sponge'11 小时前
opencv学习笔记6:SVM分类器
人工智能·机器学习·支持向量机·1024程序员节
zandy101112 小时前
2025年AI IDE的深度评测与推荐:从单一功能效率转向生态壁垒
ide·人工智能
andyguo12 小时前
ChatGPT Atlas vs Chrome:AI 浏览器的新纪元
人工智能·chrome·chatgpt
AI视觉网奇12 小时前
json 可视化 2025 coco json
python·1024程序员节
北京迅为12 小时前
【北京迅为】iTOP-4412精英版使用手册-第六十七章 USB鼠标驱动详解
linux·人工智能·嵌入式·4412
mit6.82412 小时前
[nanoGPT] ChatGPT 的 LLM 的全栈实现 | 快速上手
python
DKunYu12 小时前
2.1线性回归
pytorch·python·深度学习·1024程序员节