在pytorch中,读取GPU上张量的数值 (数据从GPU到CPU) 的几种常用方法

1、.cpu() 方法:

使用 .cpu() 方法可以将张量从 GPU 移动到 CPU。这是一种简便的方法,常用于在进行 CPU 上的操作之前将数据从 GPU 取回

python 复制代码
import torch

# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')

# 将 GPU 上的张量移动到 CPU
cpu_tensor = gpu_tensor.cpu()


# 打印输出
print("GPU Tensor:", gpu_tensor)
print("CPU Tensor:", cpu_tensor)
python 复制代码
GPU Tensor: tensor([1,2,3],device='cuda:')
CPU Array: tensor([1,2,3])

2、.to('cpu') 方法:

使用 .to('cpu') 方法也可以将张量移动到 CPU。这是一个通用的设备转移方法,可以指定目标设备和其他参数。

python 复制代码
import torch

# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')

# 将 GPU 上的张量移动到 CPU
cpu_tensor = gpu_tensor.to('cpu')

# 打印输出
print("GPU Tensor:", gpu_tensor)
print("CPU Tensor:", cpu_tensor)
python 复制代码
GPU Tensor: tensor([1,2,3],device='cuda:')
CPU Array: tensor([1,2,3])

3、.numpy() 方法:

使用 .numpy() 方法将 GPU 上的张量转换为 NumPy 数组。这个方法实际上是先将张量移动到 CPU,然后转换为 NumPy 数组。

python 复制代码
import torch

# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')

# 将 GPU 上的张量移动到 CPU,并转换为 NumPy 数组
cpu_array = gpu_tensor.cpu().numpy()

# 打印输出
print("GPU Tensor:", gpu_tensor)
print("CPU Array:", cpu_array)
python 复制代码
GPU Tensor: tensor([1,2,3],device='cuda:')
CPU Array: array([1,2,3])

4、.tolist() 方法:

使用 .tolist() 方法将张量转换为 Python 列表。

python 复制代码
import torch

# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor([1, 2, 3], device='cuda')

# 将张量转换为 Python 列表
python_list = gpu_tensor.tolist()

# 打印输出
print("GPU Tensor:",gpu_tensor)
print("\nPython_list:",python_list)
python 复制代码
GPU Tensor: tensor([1,2,3],device='cuda:')
Python_list: [1,2,3]

5、.item() 方法:

如果张量只包含一个元素,可以使用 .item() 方法直接获取该元素的 Python 数值。

python 复制代码
import torch

# 在 GPU 上创建一个张量
gpu_tensor = torch.tensor(3, device='cuda')

# 获取张量的数值
value = gpu_tensor.item()

# 打印输出
print("GPU Tensor:", gpu_tensor)
print("Value:", value)
python 复制代码
GPU Tensor: tensor(3,device='cuda:')
Value: 3
相关推荐
码界筑梦坊几秒前
240-基于Python的医疗疾病数据可视化分析系统
开发语言·python·信息可视化·数据分析·毕业设计·echarts
化作星辰17 分钟前
使用 PyTorch来构建线性回归的实现
人工智能·pytorch·深度学习
mm-q291522272927 分钟前
【天野学院5期】 第5期易语言半内存辅助培训班,主讲游戏——手游:仙剑奇侠传4,端游:神魔大陆2
人工智能·算法·游戏
谢景行^顾32 分钟前
深度学习-损失函数
人工智能·深度学习
xier_ran33 分钟前
关键词解释: LoRA(Low-Rank Adaptation)详解
人工智能
MoRanzhi120334 分钟前
Python 实现:从数学模型到完整控制台版《2048》游戏
数据结构·python·算法·游戏·数学建模·矩阵·2048
黄焖鸡能干四碗38 分钟前
信息安全管理制度(Word)
大数据·数据库·人工智能·智慧城市·规格说明书
paopao_wu38 分钟前
DeepSeek-OCR实战(01):基础运行环境搭建-Ubuntu
linux·人工智能·ubuntu·ai·ocr