大数据学习(30)-Spark Shuffle

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


Spark Shuffle

Map 和 Reduce
在Shuffle过程中. 提供数据的称之为Map端(Shuffle Write) 接收数据的 称之为 Reduce端(Shuffle Read)
在Spark的两个阶段中, 总是前一个阶段产生 一批Map提供数据, 下一阶段产生一批Reduce接收数据。

Spark 提供2种Shuffle管理器:
• HashShuffleManager
• SortShuffleManager

优化后
基本和未优化的一致,不同点在于

  1. 在一个Executor内, 不同Task是共享Buffer缓冲区
  2. 这样减少了缓冲区乃至写入磁盘文件的数量, 提高性能

SortShuffleManager

SortShuffleManager的运行机制主要分成两种,一种是普通运行机制,另一种是bypass运行机制。
bypass运行机制的触发条件如下:
1)shuffle map task 数量小于
spark.shuffle.sort.bypassMergeThre
shold=200 参数的值。
2) 不是聚合类的 shuffle 算子 ( 比如
reduceByKey)
同普通机制基本类同 , 区别在于 , 写入磁盘临时文件的时候不会在内 存中进行排序 而是直接写 , 最终合并为一个 task 一个最终文件
所以和普通模式 IDE 区别在于 :
第一,磁盘写机制不同;
第二,不会进行排序。也就是说,启用该机制的最大好处在于, shuffle write 过程中,不需要进行数据的排序操作,也就节省掉了 这部分的性能开销。

  1. SortShuffle对比HashShuffle可以减少很多的磁盘 文件,以节省网络IO的开销
  2. SortShuffle主要是对磁盘文件进行合并来进行文件 数量的减少, 同时两类Shuffle都需要经过内存缓冲区 溢写磁盘的场景。所以可以得知, 尽管Spark是内存迭 代计算框架, 但是内存迭代主要在窄依赖中. 在宽依赖(Shuffle)中磁盘交互还是一个无可避免的情况. 所 以, 我们要尽量减少Shuffle的出现, 不要进行无意义的Shuffle计算。
相关推荐
君不见,青丝成雪2 小时前
Flink双流join
大数据·数据仓库·flink
月盈缺3 小时前
学习嵌入式的第二十二天——数据结构——双向链表
数据结构·学习·链表
好好先森&4 小时前
Linux系统:C语言进程间通信信号(Signal)
大数据
EkihzniY4 小时前
结构化 OCR 技术:破解各类检测报告信息提取难题
大数据·ocr
吱吱企业安全通讯软件4 小时前
吱吱企业通讯软件保证内部通讯安全,搭建数字安全体系
大数据·网络·人工智能·安全·信息与通信·吱吱办公通讯
云手机掌柜4 小时前
Tumblr长文运营:亚矩阵云手机助力多账号轮询与关键词布局系统
大数据·服务器·tcp/ip·矩阵·流量运营·虚幻·云手机
★YUI★4 小时前
学习游戏制作记录(制作系统与物品掉落系统)8.16
学习·游戏·ui·unity·c#
努力还债的学术吗喽5 小时前
【速通】深度学习模型调试系统化方法论:从问题定位到性能优化
人工智能·深度学习·学习·调试·模型·方法论
拓端研究室7 小时前
专题:2025全球消费趋势与中国市场洞察报告|附300+份报告PDF、原数据表汇总下载
大数据·信息可视化·pdf