大数据学习(30)-Spark Shuffle

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


Spark Shuffle

Map 和 Reduce
在Shuffle过程中. 提供数据的称之为Map端(Shuffle Write) 接收数据的 称之为 Reduce端(Shuffle Read)
在Spark的两个阶段中, 总是前一个阶段产生 一批Map提供数据, 下一阶段产生一批Reduce接收数据。

Spark 提供2种Shuffle管理器:
• HashShuffleManager
• SortShuffleManager

优化后
基本和未优化的一致,不同点在于

  1. 在一个Executor内, 不同Task是共享Buffer缓冲区
  2. 这样减少了缓冲区乃至写入磁盘文件的数量, 提高性能

SortShuffleManager

SortShuffleManager的运行机制主要分成两种,一种是普通运行机制,另一种是bypass运行机制。
bypass运行机制的触发条件如下:
1)shuffle map task 数量小于
spark.shuffle.sort.bypassMergeThre
shold=200 参数的值。
2) 不是聚合类的 shuffle 算子 ( 比如
reduceByKey)
同普通机制基本类同 , 区别在于 , 写入磁盘临时文件的时候不会在内 存中进行排序 而是直接写 , 最终合并为一个 task 一个最终文件
所以和普通模式 IDE 区别在于 :
第一,磁盘写机制不同;
第二,不会进行排序。也就是说,启用该机制的最大好处在于, shuffle write 过程中,不需要进行数据的排序操作,也就节省掉了 这部分的性能开销。

  1. SortShuffle对比HashShuffle可以减少很多的磁盘 文件,以节省网络IO的开销
  2. SortShuffle主要是对磁盘文件进行合并来进行文件 数量的减少, 同时两类Shuffle都需要经过内存缓冲区 溢写磁盘的场景。所以可以得知, 尽管Spark是内存迭 代计算框架, 但是内存迭代主要在窄依赖中. 在宽依赖(Shuffle)中磁盘交互还是一个无可避免的情况. 所 以, 我们要尽量减少Shuffle的出现, 不要进行无意义的Shuffle计算。
相关推荐
小白量化2 小时前
聚宽策略分享-1年化98国九条后中小板微盘小改
大数据·数据库·人工智能·量化·qmt
im_AMBER8 小时前
Leetcode 74 K 和数对的最大数目
数据结构·笔记·学习·算法·leetcode
DBA小马哥8 小时前
Oracle迁移实战:如何轻松跨越异构数据库的学习与技术壁垒
数据库·学习·oracle·信创·国产化平替
万悉科技8 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
【上下求索】9 小时前
学习笔记095——Ubuntu 安装 lrzsz 服务?
运维·笔记·学习·ubuntu
汽车仪器仪表相关领域10 小时前
LambdaCAN:重构专业空燃比测量的数字化范式
大数据·人工智能·功能测试·安全·重构·汽车·压力测试
2401_8345170710 小时前
AD学习笔记-27 泪滴的添加和移除
笔记·学习
璞华Purvar10 小时前
地方产投集团数字化平台建设实战:从内控管理到决策赋能(璞华公开课第5期活动回顾)
大数据·人工智能
灰灰勇闯IT11 小时前
RN路由与状态管理:打造多页面应用
开发语言·学习·rn路由状态
GeminiJM11 小时前
Elasticsearch minimum_should_match 参数详解
大数据·elasticsearch·jenkins