大数据学习(30)-Spark Shuffle

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


Spark Shuffle

Map 和 Reduce
在Shuffle过程中. 提供数据的称之为Map端(Shuffle Write) 接收数据的 称之为 Reduce端(Shuffle Read)
在Spark的两个阶段中, 总是前一个阶段产生 一批Map提供数据, 下一阶段产生一批Reduce接收数据。

Spark 提供2种Shuffle管理器:
• HashShuffleManager
• SortShuffleManager

优化后
基本和未优化的一致,不同点在于

  1. 在一个Executor内, 不同Task是共享Buffer缓冲区
  2. 这样减少了缓冲区乃至写入磁盘文件的数量, 提高性能

SortShuffleManager

SortShuffleManager的运行机制主要分成两种,一种是普通运行机制,另一种是bypass运行机制。
bypass运行机制的触发条件如下:
1)shuffle map task 数量小于
spark.shuffle.sort.bypassMergeThre
shold=200 参数的值。
2) 不是聚合类的 shuffle 算子 ( 比如
reduceByKey)
同普通机制基本类同 , 区别在于 , 写入磁盘临时文件的时候不会在内 存中进行排序 而是直接写 , 最终合并为一个 task 一个最终文件
所以和普通模式 IDE 区别在于 :
第一,磁盘写机制不同;
第二,不会进行排序。也就是说,启用该机制的最大好处在于, shuffle write 过程中,不需要进行数据的排序操作,也就节省掉了 这部分的性能开销。

  1. SortShuffle对比HashShuffle可以减少很多的磁盘 文件,以节省网络IO的开销
  2. SortShuffle主要是对磁盘文件进行合并来进行文件 数量的减少, 同时两类Shuffle都需要经过内存缓冲区 溢写磁盘的场景。所以可以得知, 尽管Spark是内存迭 代计算框架, 但是内存迭代主要在窄依赖中. 在宽依赖(Shuffle)中磁盘交互还是一个无可避免的情况. 所 以, 我们要尽量减少Shuffle的出现, 不要进行无意义的Shuffle计算。
相关推荐
陈无左耳、1 小时前
HarmonyOS学习第4天: DevEco Studio初体验
学习·华为·harmonyos
挣扎与觉醒中的技术人1 小时前
网络安全入门持续学习与进阶路径(一)
网络·c++·学习·程序人生·安全·web安全
技术小齐2 小时前
网络运维学习笔记 017HCIA-Datacom综合实验01
运维·网络·学习
逸Y 仙X2 小时前
Git常见命令--助力开发
java·大数据·git·java-ee·github·idea
曾浩轩3 小时前
51单片机学习之旅——C语言小知识
c语言·学习·51单片机
宇寒风暖3 小时前
侯捷 C++ 课程学习笔记:内存管理与工具应用
c++·笔记·学习
caihuayuan43 小时前
PHP建立MySQL持久化连接(长连接)及mysql与mysqli扩展的区别
java·大数据·sql·spring
B站计算机毕业设计超人3 小时前
计算机毕业设计Hadoop+Spark+DeepSeek-R1大模型民宿推荐系统 hive民宿可视化 民宿爬虫 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·hadoop·爬虫·机器学习·课程设计·数据可视化·推荐算法
(; ̄ェ ̄)。4 小时前
在nodejs中使用ElasticSearch(二)核心概念,应用
大数据·elasticsearch·搜索引擎
Alidme4 小时前
cs106x-lecture14(Autumn 2017)-SPL实现
c++·学习·算法·codestepbystep·cs106x