模板匹配方法

模板匹配

类似于卷积,模板在原图像上从原点进行滑动,计算模板与原图像被覆盖的地方的差别程度,共用6种计算方法,将每次计算的结果放到一个矩阵里,作为结果输出。

假如原图像大小为AxB,模板为axb,则输出结果的矩阵大小为(A-a+1,B-b+1)

方法:

cv2.TM_SQDIFF:计算平方不同,结果越小越相关。

cv2.TM_CCORR:计算相关性,结果越大越相关。

cv2.TM_CCOEFF:计算相关系数,结果越大越相关。

cv2.TM_SQDIFF_NORMED:计算归一化平方不同,结果越接近0越相关。

cv2.TM_CCORR_NORMED:计算归一化相关性,结果越接近1越相关。

cv2.TM_CCOEFF_NORMED:计算归一化相关系数,结果越接近1越相关。

读图像与模板并计算模板长于宽

python 复制代码
deppb = cv2.imread('deppb.jpg', 0)
deppl = cv2.imread('deppl.png', 0)
h, w = deppl.shape[: 2]

输出图像与模板的大小

python 复制代码
print(deppb.shape)
print(deppl.shape)

六种方法

python 复制代码
methods = {'cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR', 'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED'}
python 复制代码
for meth in methods:
    deppb2 = deppb.copy()
    # 匹配方法的真值
    method = eval(meth)
    print(method)
    res = cv2.matchTemplate(deppb, deppl, method)  # 模板匹配
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

    # 如果方法为平方差匹配cv2.TM_SQDIFF或归一化匹配cv2.TM_SQDIFF_NORMED则取最小值
    if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
        top_left = min_loc
    else:
        top_left = max_loc
    bottom_right = (top_left[0] + w, top_left[1] + h)

    # 画矩形
    cv2.rectangle(deppb2, top_left, bottom_right, 255, 2)

    plt.subplot(121), plt.imshow(res, cmap='gray')
    plt.xticks([]), plt.yticks([])  # 隐藏坐标轴
    plt.subplot(122), plt.imshow(deppb2, cmap='gray')
    plt.xticks([]), plt.yticks([])
    plt.suptitle(meth)  # 表头
    plt.show()

结果




可以看出如果方法为平方差匹配cv2.TM_SQDIFF或归一化匹配cv2.TM_SQDIFF_NORMED则取最小值,最相关的位置最黑。

cv2.TM_CCORR方法较不理想。

匹配多个对象

在图mary中找到砖块maryl

maryl

python 复制代码
img_rgb = cv2.imread('mary.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('maryl.jpg', 0)
h, w = template.shape[:2]

res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
yuzhi = 0.78
# 取匹配度大于78%的坐标
loc = np.where(res >= yuzhi)
for pt in zip(*loc[::-1]):
    bottom_right = (pt[0] + w, pt[1] + h)
    cv2.rectangle(img_rgb, pt, bottom_right, (150, 255, 10), 2)

cv2.imshow('img_rgb', img_rgb)
cv2.waitKey(0)

结果

相关推荐
CryptoPP8 分钟前
springboot 对接马来西亚数据源API等多个国家的数据源
spring boot·后端·python·金融·区块链
xcLeigh15 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
大乔乔布斯16 分钟前
AttributeError: module ‘smtplib‘ has no attribute ‘SMTP_SSL‘ 解决方法
python·bash·ssl
明灯L29 分钟前
《函数基础与内存机制深度剖析:从 return 语句到各类经典编程题详解》
经验分享·python·算法·链表·经典例题
databook29 分钟前
不平衡样本数据的救星:数据再分配策略
python·机器学习·scikit-learn
碳基学AI34 分钟前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
niuniu_66636 分钟前
简单的自动化场景(以 Chrome 浏览器 为例)
运维·chrome·python·selenium·测试工具·自动化·安全性测试
FearlessBlot39 分钟前
Pyinstaller 打包flask_socketio为exe程序后出现:ValueError: Invalid async_mode specified
python·flask
独好紫罗兰1 小时前
洛谷题单3-P5718 【深基4.例2】找最小值-python-流程图重构
开发语言·python·算法
正脉科工 CAE仿真1 小时前
基于ANSYS 概率设计和APDL编程的结构可靠性设计分析
人工智能·python·算法