ElasticSearch 聚合统计

聚合统计

度量聚合:求字段的平均值,最小值,最大值,总和等

桶聚合:将文档分成不同的桶,桶的划分可以根据字段的值,范围,日期间隔

管道聚合:在桶聚合的结果上执行进一步计算

进行聚合的语法如下

json 复制代码
{
  "aggs": {
    "<agg_name>": {
      "<agg_type>": {
        "field": "<field_name>"
      }
    }
  }
}

聚合也可以进行嵌套

json 复制代码
{
  "aggs": {
    "<agg_name>": {
      "<agg_type>": {
        "field": "<field_name>"
      },
      "aggs": {
        "<agg_child_name>": {
          "<agg_type>": {
            "field": "<field_name>"
          }
        }
      }
    }
  }
}

度量聚合(Metrics aggregations)

平均值聚合

聚集被命名为 avg_age

json 复制代码
POST user/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {"avg_age": {"avg": {"field": "age"}}}
}

最小值 / 最大值 聚合

json 复制代码
POST user/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {"max_age": {"max": {"field": "age"}}}
}
json 复制代码
POST user/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {"min_age": {"min": {"field": "age"}}}
}

求和聚合

json 复制代码
POST user/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {"sum_age": {"sum": {"field": "age"}}}
}

桶聚合(Bucket aggregations)

词条聚合(Terms aggregation)

按照某个字段的值进行聚合

json 复制代码
POST user/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {"group_by_age": {"terms": {"field": "age"}}}
}

范围聚合(Range aggregation)

按照某个字段的范围进行聚合,from提供区间下界(包括),to提供区间上界(不包括)

json 复制代码
POST user/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "age_ranges":{
      "range": {
        "field": "age",
        "ranges": [
          { "to": 10 },
          { "from": 10, "to": 20 },
          { "from": 20 }
        ]
      }
    }
  }
}

管道聚合(Pipeline aggregations)

平均桶聚合(Average bucket aggregation)

json 复制代码
POST user/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "age_ranges": {
      "range": {
        "field": "age",
        "ranges": [
          { "to": 10 }, { "from": 10, "to": 20 }, { "from": 20 }
        ]
      },
      "aggs": {
        "age_avg": {"avg": {"field": "age"}}
      }
    },
    "range_avg": {
      "avg_bucket": {"buckets_path": "age_ranges>age_avg"}
    }
  }
}

对年龄分组,并求分组后的平均值,然后对分组的平均值再求平均值

求和桶聚集(Sum bucket aggregation)

json 复制代码
POST user/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "age_ranges": {
      "range": {
        "field": "age",
        "ranges": [
          { "to": 10 }, { "from": 10, "to": 20 }, { "from": 20 }
        ]
      },
      "aggs": {
        "age_sum": { "sum": {"field": "age"} }
      }
    },
    "range_sum": {
      "sum_bucket": { "buckets_path": "age_ranges>age_sum" }
    }
  }
}

对年龄分组,并求分组后的和,然后对分组的和再求和

参考博客

1\]https://www.elastic.co/guide/en/elasticsearch/reference/8.11/search-aggregations.html \[2\]https://juejin.cn/post/7103514121642983455

相关推荐
jianghx10247 小时前
Docker部署ES,开启安全认证并且设置账号密码(已运行中)
安全·elasticsearch·docker·es账号密码设置
IT小哥哥呀8 小时前
电池制造行业数字化实施
大数据·制造·智能制造·数字化·mom·电池·信息化
Xi xi xi8 小时前
苏州唯理科技近期也正式发布了国内首款神经腕带产品
大数据·人工智能·经验分享·科技
yumgpkpm8 小时前
华为鲲鹏 Aarch64 环境下多 Oracle 、mysql数据库汇聚到Cloudera CDP7.3操作指南
大数据·数据库·mysql·华为·oracle·kafka·cloudera
UMI赋能企业9 小时前
制造业流程自动化提升生产力的全面分析
大数据·人工智能
TDengine (老段)10 小时前
TDengine 数学函数 FLOOR 用户手册
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
派可数据BI可视化12 小时前
商业智能BI 浅谈数据孤岛和数据分析的发展
大数据·数据库·数据仓库·信息可视化·数据挖掘·数据分析
jiedaodezhuti12 小时前
Flink性能调优基石:资源配置与内存优化实践
大数据·flink
阿里云大数据AI技术13 小时前
云栖实录 | AI 搜索智能探索:揭秘如何让搜索“有大脑”
人工智能·搜索引擎
Lx35214 小时前
Flink窗口机制详解:如何处理无界数据流
大数据