八皇后问题(C语言)

了解题意

在一个8x8的棋盘上放置8个皇后,使得任何两个皇后都不能处于同一行、同一列或同一斜线上。问有多少种方法可以放置这8个皇后?

解决这个问题的目标是找到所有符合要求的皇后摆放方式,通常使用回溯算法来求解。回溯算法会尝试所有可能的摆放方式,一旦发现某个摆放方式会导致冲突(即两个皇后在同一行、同一列或同一斜线上),就立即回溯到上一步,尝试其他的摆放方式。

八皇后问题的解法有很多种,其中一个经典解法是使用递归和剪枝。在递归过程中,算法会尝试在每一行放置一个皇后,并检查是否与前面放置的皇后发生冲突。如果发生冲突,就回溯到上一行重新放置皇后。如果没有发生冲突,就将该摆放方式加入到结果集中。为了避免重复计算,可以使用一个数组来记录已经放置的皇后所在的行和列,以便在回溯时跳过已经计算过的摆放方式。


放置皇后的地方置为1,其余置为0.


代码如下(示例):

c 复制代码
#include <stdio.h>
int cnt=0;//解法个数
int qq[8][8]={0};
void cout_cheek(int aa[][8],int n){//输出二维数组
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			printf("%d ",aa[i][j]);
		}
		printf("\n");
	}
	printf("\n");
}

int notdanger(int qq[][8],int n,int k){//判断某位置是否安全
	for(int i=0;i<n;i++){
		if(qq[i][k]==1) return 0;//该列
	}
	for(int i=n,j=k;i>=0&&j>=0;i--,j--){//左上角
		if(qq[i][j]==1) return 0;
	}
	for(int i=n,j=k;i>=0&&j<8;i--,j++){//右上角
		if(qq[i][j]==1) return 0;
	}
	return 1;
}
void queen(int qq[][8],int n){
if(8==n){
		cnt++;
		printf("第%d种答案:\n",cnt);
		cout_cheek(qq,8);
	}else{
		for(int k=0;k<8;k++){
			if(notdanger(qq,n,k)){
				qq[n][k]=1;
				queen(qq,n+1);
				qq[n][k]=0;
			}
		}
	}
}
int main(){
	queen(qq,0);
	printf("cnt==%d\n",cnt);
	return 0;
}

递归和回溯是经典算法。


相关推荐
源代码•宸5 小时前
分布式缓存-GO(分布式算法之一致性哈希、缓存对外服务化)
开发语言·经验分享·分布式·后端·算法·缓存·golang
yongui478346 小时前
MATLAB的指纹识别系统实现
算法
高山上有一只小老虎6 小时前
翻之矩阵中的行
java·算法
jghhh016 小时前
RINEX文件进行卫星导航解算
算法
爱思德学术6 小时前
中国计算机学会(CCF)推荐学术会议-A(计算机科学理论):LICS 2026
算法·计算机理论·计算机逻辑
CVHub6 小时前
多模态图文训推一体化平台 X-AnyLabeling 3.0 版本正式发布!首次支持远程模型推理服务,并新增 Qwen3-VL 等多款主流模型及诸多功能特性,等
算法
hoiii1876 小时前
MATLAB实现Canny边缘检测算法
算法·计算机视觉·matlab
qq_430855887 小时前
线代第二章矩阵第四课:方阵的幂
算法·机器学习·矩阵
神圣的大喵7 小时前
平台无关的嵌入式通用按键管理器
c语言·单片机·嵌入式硬件·嵌入式·按键库
roman_日积跬步-终至千里7 小时前
【计算机设计与算法-习题2】动态规划应用:矩阵乘法与钢条切割问题
算法·矩阵·动态规划