RBE306TC Computer Vision Systems

RBE306TC Computer Vision Systems
Assignment
Before you dive into this Exercise 1 to Exercise 3, please check the following OpenCV functions in
Python Coding Platform for example: imread, shape, imshow, imwrite, imnoise, resize, calcHist, equalizeHist, etc.
Some other Python built-in functions, or functions in Scipy package may also be used. Please refer to online resources.
Hint : read the descriptions about each of the previous functions and any other function you might use. You may find descriptive sections of Algorithms(s) in some of the Python functions.
Exercise 1 (20%)
In this task, we use the monochrome image Lenna (i.e., lenna512.bmp) with the following tasks.
Let's regard this reference image Lenna as IM .
• (a). Add Gaussian white noise with 0 mean and variance 10 to the image IM and display the noisy image. We name it as IM_WN . Please write one function to generate this image instead of calling Matlab function directly (4%).
• (b). Add salt & pepper noise with noise density 10% to the image IM and display the noisy image.
We name it as IM_SP. Please write one function to generate this image instead of calling
Matlab function directly (4%).
• (c). Display the histograms of all the previous images and compare them with the histogram of the reference image, comments and briefly explain your finding (4%).
• (d). Use the command histeq to enhance the image constrast
( lenna512_low_dynamic_range.bmp ) and display the enhanced image (4%).
• (e). Moreover, display the histograms of both original image and enhanced image, and explain your finding in the assignment (4%).
Exercise 2 (25%)
Recall salt & pepper images generated in Task 1 IM_SP based on the IM .
• (a). Apply the median filter with a 3 × 3 window and a 5 × 5 window on the image IM_SPrespectively. Display and evaluate the PSNR of the obtained images. For each window size, comment on how effectively the noise is reduced while sharp edges and features in the image are preserved (8%).
• (b). Use the average filter (mean filter) 3 × 3 to filter the image IM_SP . Compute the PSNR and display the filtered image (8%).
• (c). As you experimented with the mean and median algorithms what different property did you notice? Was the average or median filter better and why (9%)?
Exercise 3 (55%)
In this exercise, you will be asked to build a VGG-16 and VGG-19 (see the following architecture) to train a classifier on cifar10 dataset. based on the python + PyTorch codes implemented in Lab 4 for LeNet.
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images
per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another.
Between them, the training batches contain exactly 5000 images from each class.

相关推荐
技术程序猿华锋18 分钟前
重新定义 AI 协同:三款开源 MCP 工具开启智能体从“聊天”到“操控”
人工智能·开源
「、皓子~30 分钟前
AI创作系列(2):UniApp跨端开发实战 - 海狸IM移动端完全由AI编写
开发语言·人工智能·uni-app·开源·vue·开源软件·ai编程
Sui_Network30 分钟前
WAYE.ai 为Sui 上 AI 的下一个时代赋能
大数据·前端·人工智能·物联网·游戏
BAOYUCompany30 分钟前
暴雨亮相2025中关村论坛数字金融与金融安全大会
大数据·人工智能
星火飞码iFlyCode1 小时前
【无标题】
java·前端·人工智能·算法
TMT星球1 小时前
“储能+热泵+AI”三维驱动,美的能源定义能源科技新未来
人工智能·科技·能源
大师兄带你刨AI2 小时前
「AI产业」| 《2025中国低空经济商业洞察报告(商业无人机应用篇)》
大数据·人工智能
lul~2 小时前
[科研理论]无人机底层控制算法PID、LQR、MPC解析
c++·人工智能·无人机
摆烂z2 小时前
机器学习-黑马笔记
人工智能·笔记·机器学习
硅谷秋水2 小时前
TASTE-Rob:推进面向任务的手-目标交互视频生成,实现可通用的机器人操作
人工智能·深度学习·机器学习·计算机视觉·机器人·交互