RBE306TC Computer Vision Systems

RBE306TC Computer Vision Systems
Assignment
Before you dive into this Exercise 1 to Exercise 3, please check the following OpenCV functions in
Python Coding Platform for example: imread, shape, imshow, imwrite, imnoise, resize, calcHist, equalizeHist, etc.
Some other Python built-in functions, or functions in Scipy package may also be used. Please refer to online resources.
Hint : read the descriptions about each of the previous functions and any other function you might use. You may find descriptive sections of Algorithms(s) in some of the Python functions.
Exercise 1 (20%)
In this task, we use the monochrome image Lenna (i.e., lenna512.bmp) with the following tasks.
Let's regard this reference image Lenna as IM .
• (a). Add Gaussian white noise with 0 mean and variance 10 to the image IM and display the noisy image. We name it as IM_WN . Please write one function to generate this image instead of calling Matlab function directly (4%).
• (b). Add salt & pepper noise with noise density 10% to the image IM and display the noisy image.
We name it as IM_SP. Please write one function to generate this image instead of calling
Matlab function directly (4%).
• (c). Display the histograms of all the previous images and compare them with the histogram of the reference image, comments and briefly explain your finding (4%).
• (d). Use the command histeq to enhance the image constrast
( lenna512_low_dynamic_range.bmp ) and display the enhanced image (4%).
• (e). Moreover, display the histograms of both original image and enhanced image, and explain your finding in the assignment (4%).
Exercise 2 (25%)
Recall salt & pepper images generated in Task 1 IM_SP based on the IM .
• (a). Apply the median filter with a 3 × 3 window and a 5 × 5 window on the image IM_SPrespectively. Display and evaluate the PSNR of the obtained images. For each window size, comment on how effectively the noise is reduced while sharp edges and features in the image are preserved (8%).
• (b). Use the average filter (mean filter) 3 × 3 to filter the image IM_SP . Compute the PSNR and display the filtered image (8%).
• (c). As you experimented with the mean and median algorithms what different property did you notice? Was the average or median filter better and why (9%)?
Exercise 3 (55%)
In this exercise, you will be asked to build a VGG-16 and VGG-19 (see the following architecture) to train a classifier on cifar10 dataset. based on the python + PyTorch codes implemented in Lab 4 for LeNet.
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images
per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another.
Between them, the training batches contain exactly 5000 images from each class.

相关推荐
普通程序员10 分钟前
Gemini CLI 新手安装与使用指南
前端·人工智能·后端
视觉语言导航12 分钟前
ICCV-2025 | 复杂场景的精准可控生成新突破!基于场景图的可控 3D 户外场景生成
人工智能·深度学习·具身智能
whaosoft-14318 分钟前
51c自动驾驶~合集6
人工智能
tonngw33 分钟前
Manus AI与多语言手写识别
人工智能
love530love42 分钟前
Docker 稳定运行与存储优化全攻略(含可视化指南)
运维·人工智能·windows·docker·容器
HeartException1 小时前
量子计算+AI芯片:光子计算如何重构神经网络硬件生态
人工智能
摸鱼仙人~1 小时前
Minstrel:多智能体协作生成结构化 LangGPT 提示词
人工智能·提示词
AI街潜水的八角2 小时前
深度学习图像分类数据集—濒危动物识别分类
人工智能·深度学习
程序员陆通2 小时前
独立开发A/B测试实用教程
人工智能·ai编程
knowfoot2 小时前
硬核拆解!跟着公式“走”一遍,你也能彻底看懂神经网络
人工智能·神经网络