矩阵理论基本知识

1、矩阵范数、算子范数

  1. 矩阵无穷范数是非自相容范数,矩阵1-范数、矩阵2-范数是自相容范数
  2. 矩阵2-范数:Frobenius范数,是向量2-范数的自然推广。 ∥ A ∥ m 2 = ∥ A ∥ F = ∑ a ˉ i j a i j \|A\|{m2}=\|A\|{F}=\sqrt{\sum \bar a_{ij}a_{ij}} ∥A∥m2=∥A∥F=∑aˉijaij
    1. ∥ A ∥ m 2 = t r ( A H A ) = A 的正奇异值的平方和 \|A\|_{m2} = \sqrt{tr(A^HA)} = \sqrt{A的正奇异值的平方和} ∥A∥m2=tr(AHA) =A的正奇异值的平方和
    2. ∥ A ∥ m 2 = ∥ U H A V ∥ m 2 = ∥ U A V H ∥ m 2 \|A\|{m2} = \|U^HAV\|{m2}=\|UAV^H\|_{m2} ∥A∥m2=∥UHAV∥m2=∥UAVH∥m2 酉等价保F范数
    3. ∥ A ∥ m 2 = ∥ U A ∥ m 2 = ∥ A V ∥ m 2 = ∥ U A V ∥ m 2 \|A\|{m2} = \|UA\|{m2}=\|AV\|{m2} = \|UAV\|{m2} ∥A∥m2=∥UA∥m2=∥AV∥m2=∥UAV∥m2
  3. 若矩阵范数是相容范数:则必存在向量范数与之相容。 ∣ ∣ A x ∣ ∣ ≤ ∣ ∣ A ∣ ∣ m ∣ ∣ x ∣ ∣ ||Ax||\le||A||_m ||x|| ∣∣Ax∣∣≤∣∣A∣∣m∣∣x∣∣
    1. 证明过程:构造 ∣ ∣ x ∣ ∣ = ∣ ∣ x a H ∣ ∣ m ||x|| = ||xa^H||_m ∣∣x∣∣=∣∣xaH∣∣m
    2. 矩阵的特征值一定小于等于该矩阵的相容矩阵范数。
    3. 反过来说,如果矩阵的特征值大于了某个矩阵范数,则该矩阵范数一定不相容。
  4. 任意向量范数:则必存在矩阵范数与之相容,其中放大效果的最大值称为算子范数。
    1. 算子范数再大,不过向量范数的上确界,鸡头始终是鸡
    2. 和向量范数相容的矩阵范数,终归是矩阵范数,始终有 ∣ ∣ A x ∣ ∣ ≤ ∣ ∣ A ∣ ∣ m ∣ ∣ x ∣ ∣ ||Ax||\le||A||_m ||x|| ∣∣Ax∣∣≤∣∣A∣∣m∣∣x∣∣,所以矩阵范数会大于等于算子范数。
    3. 换句话说,和向量范数相容的矩阵范数的下确界是算子范数。
    4. 算子范数是自相容矩阵范数。 ∣ ∣ A k ∣ ∣ ≤ ∣ ∣ A ∣ ∣ k ||A^k||\le ||A||^k ∣∣Ak∣∣≤∣∣A∣∣k
  5. 常见算子范数:
    1. 从属于向量1-范数的算子范数称为算子1范数:极大绝对列和范数;
    2. 从属于向量2-范数的算子范数称为算子2范数:谱范数= r ( A H A ) \sqrt{r(A^HA)} r(AHA) ;
    3. 从属于向量∞-范数的算子范数称为算子无穷范数:极大绝对行和范数;
    4. 证明思路:存在上界,上界可达。
  6. 算子范数的性质: ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣⋅∣∣是算子范数
    1. ∣ ∣ E ∣ ∣ = 1 ||E||=1 ∣∣E∣∣=1
    2. ∣ ∣ A − 1 ∣ ∣ ≥ ∣ ∣ A ∣ ∣ − 1 ||A^{-1}||\ge ||A||^{-1} ∣∣A−1∣∣≥∣∣A∣∣−1; ∣ ∣ A ∣ ∣ ≥ ∣ ∣ A − 1 ∣ ∣ − 1 ||A||\ge ||A^{-1}||^{-1} ∣∣A∣∣≥∣∣A−1∣∣−1
    3. ∣ ∣ A − 1 ∣ ∣ − 1 = inf ⁡ ∣ ∣ A x ∣ ∣ ∣ ∣ x ∣ ∣ = m i n x ≠ 0 ∣ ∣ A x ∣ ∣ ∣ ∣ x ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ||A^{-1}||^{-1} = \inf \frac{||Ax||}{||x||} = min_{x\ne0} \frac{||Ax||}{||x||}\le||A|| ∣∣A−1∣∣−1=inf∣∣x∣∣∣∣Ax∣∣=minx=0∣∣x∣∣∣∣Ax∣∣≤∣∣A∣∣
    4. ∣ λ ∣ ≤ ∣ ∣ A ∣ ∣ |\lambda|\le ||A|| ∣λ∣≤∣∣A∣∣; ∣ λ k ∣ ≤ ∣ ∣ A k ∣ ∣ |\lambda^k|\le ||A^k|| ∣λk∣≤∣∣Ak∣∣
  7. HÖlder 范数:p-范数。可以p取1和无穷。
  8. HÖlder不等式: ∣ X H Y ∣ ≤ ∑ ∣ x i ∣ ∣ y j ∣ ≤ ∥ X ∥ q ∥ Y ∥ p , 1 / q + 1 / p = 1 |X^HY|\le \sum|x_i||y_j| \le\|X\|_q\|Y\|_p, 1/q+1/p=1 ∣XHY∣≤∑∣xi∣∣yj∣≤∥X∥q∥Y∥p,1/q+1/p=1

2、矩阵分解

已经写过一期了,见:矩阵理论--矩阵分解

补充:

正规矩阵A性质: A H A = A A H A^HA=AA^H AHA=AAH

  1. λ ( A ) = λ ˉ ( A H ) \lambda(A)=\bar \lambda(A^H) λ(A)=λˉ(AH); ∣ ∣ A x ∣ ∣ = ∣ ∣ A H x ∣ ∣ ||Ax|| = ||A^Hx|| ∣∣Ax∣∣=∣∣AHx∣∣
  2. A的特征子空间和AH的特征子空间完全相同。
  3. A的特征子空间正交,即不同特征值的特征向量必正交。
  4. A是单纯矩阵

任意矩阵A:

  1. ∥ A ∥ m 2 = t r ( A H A ) = t r ( A A H ) \|A\|_{m2} = \sqrt{tr(A^HA)} = \sqrt{tr(AA^H)} ∥A∥m2=tr(AHA) =tr(AAH)
  2. A H A A^HA AHA和 A A H AA^H AAH的非零特征值完全相同,数值相同、代数重复度相同。
  3. rank(A)=rank(AH)=rank(AHA)=rank(AAH)。证明很重要
    1. AHA的核空间包含A的核空间,即Ax=0,则必有AHAx=0
    2. A的核空间包含AHA的核空间,即AHAx=0,则必有xHAHAx=<Ax,Ax>=0,即Ax=0
    3. N(AHAx)=N(A),由秩-零化度定理知:rank(A)=rank(AHA)
  4. A H A A^HA AHA和 A A H AA^H AAH都是半正定矩阵。
  5. A的特征值和奇异值的关系:
    1. 若A为非方阵,则A没有特征值。但A有奇异值。
    2. 如果A为方阵,则A的特征值的平方和<=A的奇异值的平方和。(schur不等式)
    3. 如果A为正规矩阵,则A的特征值的平方和==A的奇异值的平方和。
    4. 正规矩阵酉相似于对角阵(谱分解),任意方阵酉相似于三角阵(shcur分解)。

3、矩阵的估计

1、有关特征值的不等式
  1. 舒尔不等式: ∑ i = 1 n ∣ λ i ∣ 2 ≤ ∣ ∣ A ∣ ∣ F 2 \sum_{i=1}^{n}|\lambda_i|^2 \le ||A||_F^2 ∑i=1n∣λi∣2≤∣∣A∣∣F2
  2. Hirsh不等式: ∣ λ i ∣ ≤ n ∣ ∣ A ∣ ∣ m ∞ |\lambda_i| \le n ||A||{m\infty} ∣λi∣≤n∣∣A∣∣m∞
  3. Bendixson不等式: ∣ I m λ i ∣ ≤ n ( n − 1 ) 2 ∣ ∣ ( A − A H ) / 2 ∣ ∣ m ∞ , A ∈ R n × n |Im\lambda_i|\le \sqrt{\frac{n(n-1)}{2}}||(A-A^H)/2||{m\infty},A\in R^{n\times n} ∣Imλi∣≤2n(n−1) ∣∣(A−AH)/2∣∣m∞,A∈Rn×n
    1. n(n-1)是因为实矩阵的反共轭对称分量是的对角元为0。
    2. 除以2是因为实矩阵的复特征根成对出现。
    3. 其余证明同Hirsh不等式
  4. Browne不等式: σ n ≤ ∣ λ i ∣ ≤ σ 1 \sigma_n\le|\lambda_i|\le \sigma_1 σn≤∣λi∣≤σ1
  5. Hadamard不等式: ∏ i = 1 n ∣ λ i ∣ = ∣ det ⁡ ( A ) ∣ ≤ ∏ i = 1 n α i H α i \prod_{i=1}^{n}|\lambda_i|=|\det(A)|\le \sqrt{\prod_{i=1}^n\alpha_i^H\alpha_i} ∏i=1n∣λi∣=∣det(A)∣≤∏i=1nαiHαi
    1. 施密特正交化:A = BR,R是单位正线上三角
    2. det ⁡ ( A ) = det ⁡ ( B R ) = det ⁡ ( B ) det ⁡ ( R ) = det ⁡ ( B ) \det(A) = \det(BR)=\det(B)\det(R)=\det(B) det(A)=det(BR)=det(B)det(R)=det(B)
    3. ∣ det ⁡ ( B ) ∣ 2 = ∣ det ⁡ ( B H ) det ⁡ ( B ) ∣ = ∣ det ⁡ ( B H B ) ∣ = ∏ i = 1 n b i H b i ≤ ∏ i = 1 n α i H α i |\det(B)|^2 = |\det(B^H)\det(B)| = |\det(B^HB)|=\prod_{i=1}^n b_i^Hb_i \le\prod_{i=1}^n \alpha_i^H\alpha_i ∣det(B)∣2=∣det(BH)det(B)∣=∣det(BHB)∣=∏i=1nbiHbi≤∏i=1nαiHαi
    4. ∣ det ⁡ ( A ) ∣ ≤ ∏ i = 1 n α i H α i |\det(A)|\le \sqrt{\prod_{i=1}^n\alpha_i^H\alpha_i} ∣det(A)∣≤∏i=1nαiHαi
2、盖尔圆盘定理
  1. 关于圆盘定理1、圆盘定理2:Gerschgorin定理,以及用python绘制Gerschgorin圆盘动图
  2. 有的盖尔圆里面可能没有特征值(盖尔圆盘连通,将导致特征值函数不连续)
  3. n阶矩阵A的n个圆盘均孤立,则A可对角化(充分不必要)。
  4. n阶实矩阵A的n个圆盘均孤立,则A的特征根均为实数。
  5. 行严格对角占优矩阵A:
    1. 若A的对角元全大于0,则A的所有特征值有正实部;
    2. 若A的对角元全大于0,且A是Hermite矩阵,那么A的所有特征值均为正数。
3、Hermite矩阵的变分特征
  1. Courant-Fischer定理:Hermite矩阵的特征值估计------courant-fischer定理

  2. Weyl定理(韦尔定理):

    1. A,B均为Hermite矩阵
    2. λ k ( A ) + λ n ( B ) ≤ λ k ( A + B ) ≤ λ k ( A ) + λ 1 ( B ) \lambda_k(A)+\lambda_n(B)\le\lambda_k(A+B)\le\lambda_k(A)+\lambda_1(B) λk(A)+λn(B)≤λk(A+B)≤λk(A)+λ1(B)

4、矩阵分析

  1. 矩阵序列极限的运算规则:A(k)、B(k)的极限为A、B

    1. 线性运算:aA(k)+bB(k) →aA+bB (k → +∞)
    2. 乘:A(k)B(k) →AB (k → +∞)
    3. 当A(k)、A均可逆的时候:(A(k))-1 → A-1 (k → +∞)
  2. 用矩阵范数定义矩阵序列极限:

    1. lim ⁡ k → + ∞ ∣ ∣ A ( k ) − A ∣ ∣ = 0 \lim_{k\to+\infty}||A^{(k)}-A||=0 limk→+∞∣∣A(k)−A∣∣=0
  3. 收敛矩阵 等价于 谱半径r(A)<1

    1. lim ⁡ k → + ∞ A k = O \lim_{k\to+\infty}A^k=O limk→+∞Ak=O称为收敛矩阵
  4. 矩阵级数绝对收敛的充要条件是正项级数 ∑ i = 0 ∞ ∣ ∣ A ( k ) ∣ ∣ \sum_{i=0}^{\infty}||A^{(k)}|| ∑i=0∞∣∣A(k)∣∣收敛

  5. Neumann级数:E+A+A2+A3+...... = (E-A)-1. r(A)<1时成立

  6. 矩阵幂级数f(A):数项幂级数f(z)收敛半径为r,若r(A)<r则f(A)绝对收敛

  7. 矩阵函数:收敛的矩阵幂级数的和S,记作f(A)

  8. 收敛半径判断方法:

    1. 达朗贝尔判敛法: lim ⁡ n → ∞ ∣ c n + 1 c n ∣ = ρ {\displaystyle \lim {n\to \infty }\left\vert {c{n+1} \over c_{n}}\right\vert =\rho } n→∞lim cncn+1 =ρ , R = 1/rho
    2. 柯西判敛法: R = lim inf ⁡ n → ∞ ∣ c n ∣ − 1 n {\displaystyle R=\liminf {n\to \infty }\left|c{n}\right|^{-{\frac {1}{n}}}} R=n→∞liminf∣cn∣−n1
  9. 四阶Jordan块的k次幂,特征值为a: [ a k k a k − 1 k ( k − 1 ) 2 ! k k − 2 k ( k − 1 ) ( k − 2 ) 3 ! k k − 3 0 a k k a k − 1 k ( k − 1 ) 2 ! k k − 2 0 0 a k k a k − 1 0 0 0 a k ] \begin{bmatrix}a^k&ka^{k-1}&\frac{k(k-1)}{2!}k^{k-2}&\frac{k(k-1)(k-2)}{3!}k^{k-3} \\0&a^k&ka^{k-1}&\frac{k(k-1)}{2!}k^{k-2}\\0&0 &a^k&ka^{k-1}\\0&0&0&a^k\end{bmatrix} ak000kak−1ak002!k(k−1)kk−2kak−1ak03!k(k−1)(k−2)kk−32!k(k−1)kk−2kak−1ak

5、广义逆矩阵

逆,生来就是用于解方程组的。

  1. 逆:行列满秩。

  2. 单边逆:左逆列满秩;右逆行满秩。

    1. 求法:高斯消元。

    2. 列满秩矩阵:Ax=b

      1. 行初等变换,可以得到左逆 A L − 1 A_L^{-1} AL−1。
      2. 有解的充要条件: A A L − 1 b = b AA_L^{-1}b=b AAL−1b=b (可拓展为AGb=b)
      3. 唯一解: x = ( A H A ) − 1 A H b = A L − 1 b \Large x = (A^HA)^{-1}A^Hb=A_L^{-1}b x=(AHA)−1AHb=AL−1b
      4. 需要注意,左逆矩阵不唯一, ( A H A ) − 1 A H (A^HA)^{-1}A^H (AHA)−1AH也是列满秩矩阵A的左逆。
    3. 行满秩矩阵:

      1. 列初等变换,可以得到右逆 A R − 1 A_R^{-1} AR−1。
      2. 行满秩矩阵一定有解,且解不唯一。自由未知数的个数为n-m
      3. A H ( A A H ) − 1 A^H(AA^H)^{-1} AH(AAH)−1是A的一个右逆。右逆矩阵不唯一。
      4. 需要注意: A H ( A A H ) − 1 b ≠ A R − 1 b \large A^H(AA^H)^{-1}b {\ne} A_R^{-1}b AH(AAH)−1b=AR−1b 通常情况求出来的是两个不同的解,均满足Ax=b。这是因为行满秩矩阵Ax=b的解不唯一。
      5. 行满秩矩阵的A+是A的一个右逆。
  3. 广义逆:任何矩阵都存在广义逆矩阵。

    1. AGA=A 等价于 G是A的广义逆矩阵。

    2. 单边逆是广义逆的特殊情况。

    3. Ax = b有解的充要条件:rank A = rank (A b)

    4. 当A列满秩,且rank A = rank (A b) ,则有唯一解。

    5. 当A非列满秩,且有解,则有无穷多解。

    6. Gb = x , 且Ax = b,则称G是A的一个广义逆。

    7. 广义逆矩阵不唯一,零矩阵的广义逆矩阵是任意矩阵。

    8. 广义逆矩阵通常记作 A − A^- A−,区别于 A − 1 A^{-1} A−1

    9. 广义逆矩阵的秩 大于等于 A的秩。取等号,等价于 G具有自反性。

    10. 广义逆矩阵是逆矩阵的推广,当A是可逆矩阵的时候,A-=A-1

    11. 广义逆矩阵有逆矩阵类似的性质:

      性质 广义逆矩阵 逆矩阵
      定义 对于矩阵A,存在矩阵B,使得ABA=A 对于方阵A,存在矩阵B,使得AB=BA=I
      记号 A − A^- A− A − 1 A^{-1} A−1
      行为 对于任意向量b,满足 A A − AA^- AA−b=b 对于任意向量b,满足 A A − 1 AA^{-1} AA−1b=b
      矩阵乘法 A A − AA^- AA−A=A AA − 1 ^{-1} −1A=A
      矩阵的秩 rank( A − A A^-A A−A)=rank( A A − AA^- AA−)=rank(A) rank(AA − 1 ^{-1} −1)=rank(A)=n(满秩)
      逆的存在 广义逆存在于可逆和不可逆矩阵中 逆存在于方阵(可逆矩阵)中
      唯一性 可以有多个不同的广义逆 逆是唯一的
      幂等性 A A − AA^- AA− 、 A − A A^-A A−A是幂等矩阵 A A − 1 = A − 1 A = I AA^{-1}=A^{-1}A=I AA−1=A−1A=I是幂等矩阵
      数乘 aA的广义逆为 1 a A − , a ≠ 0 \frac{1}{a} A^-,a\ne0 a1A−,a=0 aA的逆为 1 a A − 1 , a ≠ 0 \frac{1}{a} A^{-1},a\ne0 a1A−1,a=0
      正交投影 若 ( A A − ) H = A A − (AA^-)^H=AA^- (AA−)H=AA−,则 A A − = P R ( A ) AA^-=P_{R(A)} AA−=PR(A) A A − 1 = I AA^{-1}=I AA−1=I,I是从Cn到R(A)的正交投影
  4. 自反广义逆

    1. 定义:AGA=A且GAG=G。存在且不唯一。
    2. 求法:
      1. 最大秩分解法:A=BD, A r − = D R − 1 B L − 1 A_r^-=D_R^{-1}B_L^{-1} Ar−=DR−1BL−1
      2. 构造法:X、Y是A的广义逆,则Z = XAY是自反广义逆,当然YAX也是自反广义逆。
      3. 公式法:X=(AHA)-AH,Y =AH(AAH)-都是自反广义逆
        1. R(AH)=R(AHA), N(A)=N(AHA)
        2. 存在D,使得AH=AHAD
        3. 代入可证明AXA=A
        4. rank(X)<=rank(AH)=rank(AHA) = rank(AHA(AHA)-AHA)=rank(AHAXA)<=rank(X)
        5. 所以X是自反广义逆
    3. A_是自反广义逆的充要条件是rank(A)=rank(A-)
      1. 必要性:AGA=A且GAG=G,则rank(A)=rank(AGA)<=rank(G)=rank(GAG)<=rank(A)
      2. 充分性:
        1. R(GA)属于R(G),R(GA)=R(A)=R(G),则R(G)=R(GA);
        2. GE=G,则存在X,GAX=G
        3. A=AGA=AGAXA=AXA
        4. 由构造法知G是自反广义逆
    4. 几何性质
      1. R ( A ) ⊕ N ( A H ) = C m R(A)\oplus N(A^H)=C^m R(A)⊕N(AH)=Cm
      2. R ( A H ) ⊕ N ( A ) = C n R(A^H)\oplus N(A)=C^n R(AH)⊕N(A)=Cn
      3. R ( A ) ⊕ N ( A r − ) = C m R(A)\oplus N(A^-_r)=C^m R(A)⊕N(Ar−)=Cm
      4. R ( A r − ) ⊕ N ( A ) = C n R(A^-_r)\oplus N(A)=C^n R(Ar−)⊕N(A)=Cn
      5. R ( A r − ) = R ( A H ) R(A^-_r) = R(A^H) R(Ar−)=R(AH)
      6. N ( A r − ) = N ( A H ) N(A^-_r) = N(A^H) N(Ar−)=N(AH)
  5. MP广义逆

    1. 定义:AGA=A,GAG=G,(GA)H=GA, (AG)H=AG
    2. 存在且唯一
    3. 计算方法:
      1. 最大值分解法: A + = D H ( D D H ) − 1 ( B H B ) − 1 B H A^+=D^H(DD^H)^{-1}(B^HB)^{-1}B^H A+=DH(DDH)−1(BHB)−1BH
      2. 奇异值分解法: A + = V H D + U A^+=V^HD^+U A+=VHD+U (A = UDVH
      3. 注意:最大值分解不唯一,然而最大值分解的这种乘积,即A+是唯一的。
    4. A+的性质:
      1. 自反性:(A+)+=A
      2. 唯一性: A + = ( A H A ) + A H = A H ( A A H ) + = D H ( D D H ) − 1 ( B H B ) − 1 B H A^+=(A^HA)^+A^H=A^H(AA^H)^+=D^H(DD^H)^{-1}(B^HB)^{-1}B^H A+=(AHA)+AH=AH(AAH)+=DH(DDH)−1(BHB)−1BH
      3. 几何性质: R ( A + ) = R ( A H ) R(A^+) = R(A^H) R(A+)=R(AH) (这是自反广义逆具有的性质)
      4. 正交投影性: A A + = P R ( A ) , A + A = P R ( A H ) AA^+=P_{R(A)},A^+A=P_{R(A^H)} AA+=PR(A),A+A=PR(AH)
      5. 行列子空间相等性:R(A)=R(AH)的充要条件是 A + A = A + A A^+A=A^+A A+A=A+A
      6. ( A H A ) + = A + ( A H ) + = A + ( A A H ) + A = A H ( A A H ) + ( A H ) + (A^HA)^+=A^+(A^H)^+=A^+(AA^H)^+A=A^H(AA^H)^+(A^H)^+ (AHA)+=A+(AH)+=A+(AAH)+A=AH(AAH)+(AH)+
      7. A + A = ( A H A ) + ( A H A ) = ( A H A ) ( A H A ) + A^+A=(A^HA)^+(A^HA)=(A^HA)(A^HA)^+ A+A=(AHA)+(AHA)=(AHA)(AHA)+
    5. 若A是Hermite矩阵:
      1. ( A 2 ) + = ( A + ) 2 (A^2)^+=(A^+)^2 (A2)+=(A+)2
  6. 矩阵方程通解:

    1. AXB=D有解的充要条件:AA-DB-B=D
    2. 通解:X=A-DB-+Y-A-AYBB-
    3. Ax=b有解的充要条件:AA-b=b
    4. 通解:x = A-b +y-A-1Ay
  7. 相容方程组的最小范数解:

    1. 相容方程组:有解方程组
    2. AGA=A,(GA)H=GA
    3. Gb=x是最小范数解
  8. 不相容方程组的最小二乘解:

    1. 不相容方程组:无解方程组
    2. AGA=A,(AG)H=AG
    3. Gb=x是最小二乘解之一,最小二乘解的通解: x = G b + ( E − G A ) b x = Gb+(E-GA)b x=Gb+(E−GA)b
  9. 不相容方程组的最小二乘解有时候不够好,最小二乘解的最小范数解叫最佳逼近解:

    1. 最佳逼近解:A+b=x
    2. 如果方程组是相容方程组,则A+b是最小范数解
  10. 关于广义逆的运算规则

    1. ( A − ) H = ( A H ) − (A^-)^H=(A^H)^- (A−)H=(AH)−
    2. B = S A T , B − = T − 1 A − S − 1 B=SAT,B^-=T^{-1}A^-S^{-1} B=SAT,B−=T−1A−S−1
    3. ( A B ) + = B + A + (AB)^+=B^+A^+ (AB)+=B+A+的充要条件: R ( A H A B ) ⊂ R ( B ) , R ( B B H A H ) ⊂ R ( A H ) R(A^HAB)\sub R(B),R(BB^HA^H)\sub R(A^H) R(AHAB)⊂R(B),R(BBHAH)⊂R(AH)
    4. ( A B ) + = B + A + (AB)^+=B^+A^+ (AB)+=B+A+的充分条件:A列满秩(AHA满秩),B行满秩(BBH满秩)
相关推荐
九州ip动态1 小时前
自媒体工作室如何矩阵?自媒体矩阵养号策略
线性代数·矩阵·媒体
田梓燊2 小时前
数学复习笔记 19
笔记·线性代数·机器学习
田梓燊15 小时前
数学复习笔记 12
笔记·线性代数·机器学习
jerry6091 天前
LLM笔记(六)线性代数
笔记·学习·线性代数·自然语言处理
田梓燊1 天前
数学复习笔记 14
笔记·线性代数·矩阵
田梓燊2 天前
数学复习笔记 15
笔记·线性代数·机器学习
Magnum Lehar2 天前
3d游戏引擎的math矩阵实现
线性代数·矩阵·游戏引擎
HappyAcmen2 天前
线代第二章矩阵第九、十节:初等变换、矩阵的标准形、阶梯形与行最简阶梯形、初等矩阵
笔记·学习·线性代数·矩阵
人类发明了工具2 天前
【优化算法】协方差矩阵自适应进化策略(Covariance Matrix Adaptation Evolution Strategy,CMA-ES)
线性代数·算法·矩阵·cma-es
赵青临的辉3 天前
基础数学:线性代数与概率论在AI中的应用
人工智能·线性代数·概率论