PyTorch官网demo解读——第一个神经网络(4)

上一篇:PyTorch官网demo解读------第一个神经网络(3)-CSDN博客

上一篇我们聊了手写数字识别神经网络的损失函数和梯度下降算法,这一篇我们来聊聊激活函数。

大佬说激活函数的作用是让神经网络产生非线性,类似人脑神经元一样,人脑神经元对输入的处理是非线性的。这个说法有些抽象,其实回到我们具体的模型中,激活函数的作用是将输出约束在某个预期的范围内,同时让输入到输出符合我们预期的分布。例如sigmod函数将输出约束在0~1之间,同时如果输入在0周围,输出的差异比较大,如果输入偏离0较多,则输出的差异就比较小。

代码解读

python 复制代码
# 激活函数
def log_softmax(x):
    return x - x.exp().sum(-1).log().unsqueeze(-1)

完整代码请参见++第一篇++

demo代码中使用了一个自定义的log_softmax激活函数,其实这并不是一个标准的log_softmax函数,标准的log_softmax函数如下(来自PyTorch官网):

对以上公式进行一波推导得出(参见推导原文):

对比上面的代码发现代码里面的实现是没有减去M的,但这样也是可行的。

替换激活函数

单单看上面代码的激活函数有时候不是很好理解为什么这样做,不要激活函数可以吗?用其它激活函数又如何呢?下面我们就动手来捣鼓一下,看看换几个其它的激活函数会怎样?

首先我们把原来用log_softmax作为激活函数的结果跑出来,方便后面做对比:

接下来我们就来替换几个激活函数看看效果。

1. 替换成softmax函数

代码:

python 复制代码
def softmax(x):
    return x.exp() / x.exp().sum(-1).unsqueeze(-1)

运行结果:

分析:

使用softmax函数训练出来的模型精度略逊于log_softmax,但不会相差太多。为什么呢?可以留言发表看法。

2. 替换成sigmod函数

代码:

python 复制代码
def sigmod(x):
    return 1 / (1 + (-x).exp())

运行结果:

分析:

使用sigmod函数作为激活函数训练出来的模型精度只有0.6094,比使用log_softmax差很多,说明sigmod函数不能作为分类问题模型的激活函数

3. 替换成tanh函数

代码:

python 复制代码
def tanh(x):
    p_exp = x.exp()
    n_exp = (-x).exp()
    return (p_exp - n_exp) / (p_exp + n_exp)

运行结果:

分析:

使用tanh函数作为模型的激活函数,训练出来精度为0.7188,比使用sigmod函数稍微好点,但比log_softmax还是差太多,所以tanh函数同样不适合作为分类问题模型的激活函数

总结

通过替换不同类型的激活函数,我们可以从侧面看出激活函数对于模型的重要性,也引起我们对激活函数的思考,算是抛砖引玉吧。在其它模型中如何选择激活函数呢?让我们共同学习!

如切如磋,如琢如磨!

相关推荐
Liue612312312 小时前
基于YOLOv26的口罩佩戴检测与识别系统实现与优化
人工智能·yolo·目标跟踪
小二·4 小时前
Python Web 开发进阶实战 :AI 原生数字孪生 —— 在 Flask + Three.js 中构建物理世界实时仿真与优化平台
前端·人工智能·python
chinesegf4 小时前
文本嵌入模型的比较(一)
人工智能·算法·机器学习
珠海西格电力4 小时前
零碳园区的能源结构优化需要哪些技术支持?
大数据·人工智能·物联网·架构·能源
Black蜡笔小新4 小时前
视频汇聚平台EasyCVR打造校园消防智能监管新防线
网络·人工智能·音视频
珠海西格电力科技4 小时前
双碳目标下,微电网为何成为能源转型核心载体?
网络·人工智能·物联网·云计算·智慧城市·能源
2501_941837264 小时前
【计算机视觉】基于YOLOv26的交通事故检测与交通状况分析系统详解_1
人工智能·yolo·计算机视觉
HyperAI超神经4 小时前
加州大学构建基于全连接神经网络的片上光谱仪,在芯片级尺寸上实现8纳米的光谱分辨率
人工智能·深度学习·神经网络·机器学习·ai编程
badfl5 小时前
AI漫剧技术方案拆解:NanoBanana+Sora视频生成全流程
人工智能·ai·ai作画
杭州杭州杭州5 小时前
李沐动手学深度学习笔记(4)---物体检测基础
人工智能·笔记·深度学习