PyTorch官网demo解读——第一个神经网络(4)

上一篇:PyTorch官网demo解读------第一个神经网络(3)-CSDN博客

上一篇我们聊了手写数字识别神经网络的损失函数和梯度下降算法,这一篇我们来聊聊激活函数。

大佬说激活函数的作用是让神经网络产生非线性,类似人脑神经元一样,人脑神经元对输入的处理是非线性的。这个说法有些抽象,其实回到我们具体的模型中,激活函数的作用是将输出约束在某个预期的范围内,同时让输入到输出符合我们预期的分布。例如sigmod函数将输出约束在0~1之间,同时如果输入在0周围,输出的差异比较大,如果输入偏离0较多,则输出的差异就比较小。

代码解读

python 复制代码
# 激活函数
def log_softmax(x):
    return x - x.exp().sum(-1).log().unsqueeze(-1)

完整代码请参见++第一篇++

demo代码中使用了一个自定义的log_softmax激活函数,其实这并不是一个标准的log_softmax函数,标准的log_softmax函数如下(来自PyTorch官网):

对以上公式进行一波推导得出(参见推导原文):

对比上面的代码发现代码里面的实现是没有减去M的,但这样也是可行的。

替换激活函数

单单看上面代码的激活函数有时候不是很好理解为什么这样做,不要激活函数可以吗?用其它激活函数又如何呢?下面我们就动手来捣鼓一下,看看换几个其它的激活函数会怎样?

首先我们把原来用log_softmax作为激活函数的结果跑出来,方便后面做对比:

接下来我们就来替换几个激活函数看看效果。

1. 替换成softmax函数

代码:

python 复制代码
def softmax(x):
    return x.exp() / x.exp().sum(-1).unsqueeze(-1)

运行结果:

分析:

使用softmax函数训练出来的模型精度略逊于log_softmax,但不会相差太多。为什么呢?可以留言发表看法。

2. 替换成sigmod函数

代码:

python 复制代码
def sigmod(x):
    return 1 / (1 + (-x).exp())

运行结果:

分析:

使用sigmod函数作为激活函数训练出来的模型精度只有0.6094,比使用log_softmax差很多,说明sigmod函数不能作为分类问题模型的激活函数

3. 替换成tanh函数

代码:

python 复制代码
def tanh(x):
    p_exp = x.exp()
    n_exp = (-x).exp()
    return (p_exp - n_exp) / (p_exp + n_exp)

运行结果:

分析:

使用tanh函数作为模型的激活函数,训练出来精度为0.7188,比使用sigmod函数稍微好点,但比log_softmax还是差太多,所以tanh函数同样不适合作为分类问题模型的激活函数

总结

通过替换不同类型的激活函数,我们可以从侧面看出激活函数对于模型的重要性,也引起我们对激活函数的思考,算是抛砖引玉吧。在其它模型中如何选择激活函数呢?让我们共同学习!

如切如磋,如琢如磨!

相关推荐
vocal13 分钟前
谷歌第七版Prompt Engineering—第一部分
人工智能
MonkeyKing_sunyuhua14 分钟前
5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
人工智能·microsoft·agent
arbboter21 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
IT_Octopus34 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能38 分钟前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客44 分钟前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条1 小时前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po1 小时前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae
程序员辣条1 小时前
为什么需要提示词工程?什么是提示词工程(prompt engineering)?为什么需要提示词工程?收藏我这一篇就够了!
人工智能·程序员·产品经理
孔令飞1 小时前
Go:终于有了处理未定义字段的实用方案
人工智能·云原生·go