PyTorch官网demo解读——第一个神经网络(4)

上一篇:PyTorch官网demo解读------第一个神经网络(3)-CSDN博客

上一篇我们聊了手写数字识别神经网络的损失函数和梯度下降算法,这一篇我们来聊聊激活函数。

大佬说激活函数的作用是让神经网络产生非线性,类似人脑神经元一样,人脑神经元对输入的处理是非线性的。这个说法有些抽象,其实回到我们具体的模型中,激活函数的作用是将输出约束在某个预期的范围内,同时让输入到输出符合我们预期的分布。例如sigmod函数将输出约束在0~1之间,同时如果输入在0周围,输出的差异比较大,如果输入偏离0较多,则输出的差异就比较小。

代码解读

python 复制代码
# 激活函数
def log_softmax(x):
    return x - x.exp().sum(-1).log().unsqueeze(-1)

完整代码请参见++第一篇++

demo代码中使用了一个自定义的log_softmax激活函数,其实这并不是一个标准的log_softmax函数,标准的log_softmax函数如下(来自PyTorch官网):

对以上公式进行一波推导得出(参见推导原文):

对比上面的代码发现代码里面的实现是没有减去M的,但这样也是可行的。

替换激活函数

单单看上面代码的激活函数有时候不是很好理解为什么这样做,不要激活函数可以吗?用其它激活函数又如何呢?下面我们就动手来捣鼓一下,看看换几个其它的激活函数会怎样?

首先我们把原来用log_softmax作为激活函数的结果跑出来,方便后面做对比:

接下来我们就来替换几个激活函数看看效果。

1. 替换成softmax函数

代码:

python 复制代码
def softmax(x):
    return x.exp() / x.exp().sum(-1).unsqueeze(-1)

运行结果:

分析:

使用softmax函数训练出来的模型精度略逊于log_softmax,但不会相差太多。为什么呢?可以留言发表看法。

2. 替换成sigmod函数

代码:

python 复制代码
def sigmod(x):
    return 1 / (1 + (-x).exp())

运行结果:

分析:

使用sigmod函数作为激活函数训练出来的模型精度只有0.6094,比使用log_softmax差很多,说明sigmod函数不能作为分类问题模型的激活函数

3. 替换成tanh函数

代码:

python 复制代码
def tanh(x):
    p_exp = x.exp()
    n_exp = (-x).exp()
    return (p_exp - n_exp) / (p_exp + n_exp)

运行结果:

分析:

使用tanh函数作为模型的激活函数,训练出来精度为0.7188,比使用sigmod函数稍微好点,但比log_softmax还是差太多,所以tanh函数同样不适合作为分类问题模型的激活函数

总结

通过替换不同类型的激活函数,我们可以从侧面看出激活函数对于模型的重要性,也引起我们对激活函数的思考,算是抛砖引玉吧。在其它模型中如何选择激活函数呢?让我们共同学习!

如切如磋,如琢如磨!

相关推荐
神马行空40 分钟前
一文解读DeepSeek大模型在政府工作中具体的场景应用
人工智能·大模型·数字化转型·deepseek·政务应用
合合技术团队42 分钟前
实测对比|法国 AI 独角兽公司发布的“最强 OCR”,实测效果如何?
大数据·人工智能·图像识别
蒹葭苍苍8731 小时前
LoRA、QLoRA微调与Lama Factory
人工智能·笔记
蹦蹦跳跳真可爱5891 小时前
Python----机器学习(基于PyTorch的线性回归)
人工智能·pytorch·python·机器学习·线性回归
mosquito_lover11 小时前
矿山边坡监测预警系统设计
人工智能·python·深度学习·神经网络·视觉检测
船长@Quant1 小时前
PyTorch量化进阶教程:第二章 Transformer 理论详解
pytorch·python·深度学习·transformer·量化交易·sklearn·ta-lib
契合qht53_shine1 小时前
OpenCV 从入门到精通(day_03)
人工智能·opencv·计算机视觉
Naomi5212 小时前
Trustworthy Machine Learning
人工智能·机器学习
刘 怼怼2 小时前
使用 Vue 重构 RAGFlow 实现聊天功能
前端·vue.js·人工智能·重构
程序员安仔2 小时前
每天学新 AI 工具好累?我终于发现了“一键全能且免费不限量”的国产终极解决方案
人工智能