Elasticsearch:结合 ELSER 和 BM25 文本查询的相关搜索

Elastic Learned Spare EncodeR (ELSER) 允许你执行语义搜索以获得更相关的搜索结果。 然而,有时,将语义搜索结果与常规关键字搜索结果相结合以获得最佳结果会更有用。 问题是,如何结合文本和语义搜索结果?

首先,让我们看一下对某些字段使用 multi_match 的花园品种文本查询。 这种搜索具有关键字搜索的典型陷阱,即关键字必须以某种形式存在于要返回的文档中,并且我们没有考虑用户搜索内容的上下文。

sql 复制代码
1.  POST search-national-parks/_search
2.  {
3.    "query": {
4.      "multi_match": {
5.        "query": "Where can I see the Northern Lights?",
6.        "fields": ["title", "description"]
7.      }
8.    },
9.    "_source": ["title"]
10.  }

现在,让我们看看 ELSER 查询本身:

sql 复制代码
1.  POST search-national-parks/_search
2.  {
3.    "query": {
4.      "bool": {
5.        "should": [
6.          {
7.            "text_expansion": {
8.              "ml.inference.title_expanded.predicted_value": {
9.                "model_id": ".elser_model_2",
10.                "model_text": "Where can I see the Northern Lights?"
11.              }
12.            }
13.          },
14.          {
15.            "text_expansion": {
16.              "ml.inference.description_expanded.predicted_value": {
17.                "model_id": ".elser_model_2",
18.                "model_text": "Where can I see the Northern Lights?"
19.              }
20.            }
21.          }
22.        ]
23.      }
24.    },
25.    "_source": [
26.      "title"
27.    ]
28.  }

在上面,我们使用 ELSER 来对文章进行语义搜索。如果你对 ELSER 还不是很熟的话,请参阅如下的文章:

组合这两个查询的第一种方法是使用称为线性提升的策略。 在此示例中,我们正在提升文本搜索结果,以便它们具有优先级。 根据你正在运行的查询,这可能是理想的,也可能不是理想的。

sql 复制代码
1.  POST search-national-parks/_search
2.  {
3.    "query": {
4.      "bool": {
5.        "should": [
6.          {
7.            "text_expansion": {
8.              "ml.inference.title_expanded.predicted_value": {
9.                "model_id": ".elser_model_2",
10.                "model_text": "Where can I see the Northern Lights?",
11.                "boost": 1
12.              }
13.            }
14.          },
15.          {
16.            "text_expansion": {
17.              "ml.inference.description_expanded.predicted_value": {
18.                "model_id": ".elser_model_2",
19.                "model_text": "Where can I see the Northern Lights?",
20.                "boost": 1
21.              }
22.            }
23.          },
24.          {
25.            "multi_match": {
26.              "query": "Where can I see the Northern Lights?",
27.              "fields": [
28.                "title",
29.                "description"
30.              ],
31.              "boost": 4
32.            }
33.          }
34.        ]
35.      }
36.    },
37.    "_source": [
38.      "title"
39.    ]
40.  }

最后,我们还可以使用倒数排名融合(RRF)将文本搜索结果与语义结果结合起来,并对返回的搜索结果重新评分:

sql 复制代码
1.  POST search-national-parks/_search
2.  {
3.    "sub_searches": [
4.      {
5.        "query": {
6.          "multi_match": {
7.            "query": "Where can I see the Northern Lights?",
8.            "fields": [
9.              "title",
10.              "description"
11.            ]
12.          }
13.        }
14.      },
15.      {
16.        "query": {
17.          "text_expansion": {
18.            "ml.inference.title_expanded.predicted_value": {
19.              "model_id": ".elser_model_2",
20.              "model_text": "Where can I see the Northern Lights?"
21.            }
22.          }
23.        }
24.      },
25.      {
26.        "query": {
27.          "text_expansion": {
28.            "ml.inference.description_expanded.predicted_value": {
29.              "model_id": ".elser_model_2",
30.              "model_text": "Where can I see the Northern Lights?"
31.            }
32.          }
33.        }
34.      }
35.    ],
36.    "rank": {
37.      "rrf": {
38.        "window_size": 10,
39.        "rank_constant": 20
40.      }
41.    },
42.    "_source": [
43.      "title", "states"
44.    ]
45.  }

这些示例应该可以帮助你开始为你的用例创建最相关的搜索结果的旅程!

相关推荐
喝醉酒的小白3 小时前
Elasticsearch 配置文件
大数据·elasticsearch·搜索引擎
missay_nine6 小时前
Elasticsearch
大数据·elasticsearch·搜索引擎
it噩梦7 小时前
深度分析 es multi_match 中most_fields、best_fields、cross_fields区别
java·elasticsearch
喝醉酒的小白8 小时前
ES 集群 A 和 ES 集群 B 数据流通
大数据·elasticsearch·搜索引擎
炭烤玛卡巴卡8 小时前
初学elasticsearch
大数据·学习·elasticsearch·搜索引擎
it噩梦8 小时前
es 中使用update 、create 、index的区别
大数据·elasticsearch
Mitch31110 小时前
【漏洞复现】CVE-2015-3337 Arbitrary File Reading
elasticsearch·网络安全·docker·漏洞复现
Mitch31110 小时前
【漏洞复现】CVE-2015-5531 Arbitrary File Reading
web安全·elasticsearch·网络安全·docker·漏洞复现
喝醉酒的小白12 小时前
Elasticsearch(ES)监控、巡检及异常指标处理指南
大数据·elasticsearch·搜索引擎
孤水寒月14 小时前
Git忽略文件.gitignore
git·elasticsearch