torch 实现inverse-square-root scheduler

python 复制代码
import cv2
import torch.nn as nn
import torch
from torchvision.models import AlexNet
import matplotlib.pyplot as plt

from torch.optim.lr_scheduler import LambdaLR
def get_inverse_sqrt_scheduler(optimizer, num_warmup_steps, num_cooldown_steps, num_training_steps):
    # linearly warmup for the first args.warmup_updates
    lr_step = 1 / num_warmup_steps
    # then, decay prop. to the inverse square root of the update number
    decay_factor = num_warmup_steps**0.5
    decayed_lr = decay_factor * (num_training_steps - num_cooldown_steps) ** -0.5
    def lr_lambda(current_step: int):
        if current_step < num_warmup_steps:
            return float(current_step * lr_step)
        elif current_step > (num_training_steps - num_cooldown_steps):
            return max(0.0, float(decayed_lr * (num_training_steps - current_step) / num_cooldown_steps))
        else:
            return float(decay_factor * current_step**-0.5)

    return LambdaLR(optimizer, lr_lambda, last_epoch=-1)

#定义2分类网络
steps = []
lrs = []
model = AlexNet(num_classes=2)
lr = 0.1
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9)
#前10steps warmup ,中间70steps正常衰减,最后20个steps期间衰减到0
scheduler = get_inverse_sqrt_scheduler(optimizer,num_warmup_steps=10, num_cooldown_steps=20, num_training_steps=100)
for epoch in range(10):
    for batch in range(10):
        scheduler.step()
        lrs.append(scheduler.get_lr()[0])
        steps.append(epoch*10+batch)
 
 
plt.figure()
plt.legend()
plt.plot(steps, lrs, label='inverse_sqrt')
plt.savefig("dd.png")
相关推荐
Java后端的Ai之路11 小时前
【Python 教程15】-Python和Web
python
冬奇Lab13 小时前
一天一个开源项目(第15篇):MapToPoster - 用代码将城市地图转换为精美的海报设计
python·开源
心疼你的一切15 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
二十雨辰15 小时前
[python]-AI大模型
开发语言·人工智能·python
Yvonne爱编码15 小时前
JAVA数据结构 DAY6-栈和队列
java·开发语言·数据结构·python
chian-ocean15 小时前
量化加速实战:基于 `ops-transformer` 的 INT8 Transformer 推理
人工智能·深度学习·transformer
水月wwww15 小时前
【深度学习】卷积神经网络
人工智能·深度学习·cnn·卷积神经网络
杜子不疼.15 小时前
CANN_Transformer加速库ascend-transformer-boost的大模型推理性能优化实践
深度学习·性能优化·transformer
前端摸鱼匠16 小时前
YOLOv8 环境配置全攻略:Python、PyTorch 与 CUDA 的和谐共生
人工智能·pytorch·python·yolo·目标检测
renhongxia116 小时前
如何基于知识图谱进行故障原因、事故原因推理,需要用到哪些算法
人工智能·深度学习·算法·机器学习·自然语言处理·transformer·知识图谱