Zookeeper-Zookeeper分布式一致性协议ZAB源码解析

整个Zookeeper就是一个多节点分布式一致性算法的实现,底层采用的实现协议是ZAB。

ZAB协议介绍

ZAB 协议全称: Zookeeper Atomic Broadcast(Zookeeper 原子广播协议)。

**Zookeeper 是一个为分布式应用提供高效且可靠的分布式协调服务。**在解决分布式一致性方面,Zookeeper 并没有使用 Paxos ,而是采用了 ZAB 协议,ZAB是Paxos算法的一种简化实现。

**ZAB 协议定义:**ZAB 协议是为分布式协调服务 Zookeeper 专门设计的一种支持 崩溃恢复 和 原子广播 的协议。下面我们会重点讲这两个东西。

基于该协议,Zookeeper 实现了一种 主备模式 的系统架构来保持集群中各个副本之间数据一致性。具体如下图所示:

上图显示了 Zookeeper 如何处理集群中的数据。所有客户端写入数据都是写入到Leader节点,然后,由 Leader 复制到Follower节点中,从而保证数据一致性。

那么复制过程又是如何的呢?复制过程类似两阶段提交(2PC),ZAB 只需要 Follower(含leader自己的ack) 有一半以上返回 Ack 信息就可以执行提交,大大减小了同步阻塞。也提高了可用性。

简单介绍完,开始重点介绍 消息广播 和 崩溃恢复。整个 Zookeeper 就是在这两个模式之间切换。 简而言之,当 Leader 服务可以正常使用,就进入消息广播模式,当 Leader 不可用时,则进入崩溃恢复模式。

消息广播

ZAB 协议的消息广播过程使用的是一个原子广播协议,类似一个 两阶段提交过程。对于客户端发送的写请求,全部由 Leader 接收,Leader 将请求封装成一个事务 Proposal,将其发送给所有 Follwer ,然后,根据所有 Follwer 的反馈,如果超过半数(含leader自己)成功响应,则执行 commit 操作。

整个广播流程如下:

通过以上步骤,就能够保持集群之间数据的一致性。

还有一些细节:

  1. Leader 在收到客户端请求之后,会将这个请求封装成一个事务,并给这个事务分配一个全局递增的唯一 ID,称为事务ID(ZXID),ZAB 协议需要保证事务的顺序,因此必须将每一个事务按照 ZXID 进行先后排序然后处理,主要通过消息队列实现。
  2. 在 Leader 和 Follwer 之间还有一个消息队列,用来解耦他们之间的耦合,解除同步阻塞。
  3. zookeeper集群中为保证任何所有进程能够有序的顺序执行,只能是 Leader 服务器接受写请求,即使是 Follower 服务器接受到客户端的写请求,也会转发到 Leader 服务器进行处理,Follower只能处理读请求。
  4. ZAB协议规定了如果一个事务在一台机器上被处理(commit)成功,那么应该在所有的机器上都被处理成功,哪怕机器出现故障崩溃。

崩溃恢复

刚刚我们说消息广播过程中,Leader 崩溃怎么办?还能保证数据一致吗?

实际上,当 Leader 崩溃,即进入我们开头所说的崩溃恢复模式(崩溃即:Leader 失去与过半 Follwer 的联系)。下面来详细讲述。

假设1:Leader 在复制数据给所有 Follwer 之后,还没来得及收到Follower的ack返回就崩溃,怎么办?

假设2:Leader 在收到 ack 并提交了自己,同时发送了部分 commit 出去之后崩溃怎么办?

针对这些问题,ZAB 定义了 2 个原则:

  1. ZAB 协议确保丢弃那些只在 Leader 提出/复制,但没有提交的事务。
  2. ZAB 协议确保那些已经在 Leader 提交的事务最终会被所有服务器提交。

所以,ZAB 设计了下面这样一个选举算法:

能够确保提交已经被 Leader 提交的事务,同时丢弃已经被跳过的事务。

针对这个要求,如果让 Leader 选举算法能够保证新选举出来的 Leader 服务器拥有集群中所有机器 ZXID 最大的事务,那么就能够保证这个新选举出来的 Leader 一定具有所有已经提交的提案。

而且这么做有一个好处是:可以省去 Leader 服务器检查事务的提交和丢弃工作的这一步操作。

数据同步

当崩溃恢复之后,需要在正式工作之前(接收客户端请求),Leader 服务器首先确认事务是否都已经被过半的 Follwer 提交了,即是否完成了数据同步。目的是为了保持数据一致。

当 Follwer 服务器成功同步之后,Leader 会将这些服务器加入到可用服务器列表中。

实际上,Leader 服务器处理或丢弃事务都是依赖着 ZXID 的,那么这个 ZXID 如何生成呢?

**答:**在 ZAB 协议的事务编号 ZXID 设计中,ZXID 是一个 64 位的数字,其中低 32 位可以看作是一个简单的递增的计数器,针对客户端的每一个事务请求,Leader 都会产生一个新的事务 Proposal 并对该计数器进行 + 1 操作。

而高 32 位则代表了 Leader 服务器上取出本地日志中最大事务 Proposal 的 ZXID,并从该 ZXID 中解析出对应的 epoch 值(leader选举周期),当一轮新的选举结束后,会对这个值加一,并且事务id又从0开始自增。

高 32 位代表了每代 Leader 的唯一性,低 32 代表了每代 Leader 中事务的唯一性。同时,也能让 Follwer 通过高 32 位识别不同的 Leader。简化了数据恢复流程。

基于这样的策略: 当 Follower 连接上 Leader 之后,Leader 服务器会根据自己服务器上最后被提交的 ZXID 和 Follower 上的 ZXID 进行比对,比对结果要么回滚,要么和 Leader 同步。

ZAB写数据源码流程图(务必跟着视频看)

相关推荐
Mr.Demo.2 小时前
[RabbitMQ] 保证消息可靠性的三大机制------消息确认,持久化,发送方确认
分布式·rabbitmq
小扳2 小时前
微服务篇-深入了解使用 RestTemplate 远程调用、Nacos 注册中心基本原理与使用、OpenFeign 的基本使用
java·运维·分布式·后端·spring·微服务·架构
LightOfNight2 小时前
Redis设计与实现第14章 -- 服务器 总结(命令执行器 serverCron函数 初始化)
服务器·数据库·redis·分布式·后端·缓存·中间件
cnsxjean12 小时前
SpringBoot集成Minio实现上传凭证、分片上传、秒传和断点续传
java·前端·spring boot·分布式·后端·中间件·架构
hummhumm15 小时前
第33章 - Go语言 云原生开发
java·开发语言·后端·python·sql·云原生·golang
petaexpress15 小时前
5种常见的k8s云原生数据管理方案详解
云原生·kubernetes·k8s云原生
wenyue112116 小时前
云原生开发框架
数据库·云原生
颜淡慕潇16 小时前
【K8S系列】深入解析 Kubernetes 中的 Deployment
后端·云原生·容器·kubernetes
桃园码工18 小时前
3-测试go-redis+redsync实现分布式锁 --开源项目obtain_data测试
redis·分布式·golang
sx_170618 小时前
Spark面试题
大数据·分布式·spark