数据分析基础之《numpy(6)—IO操作与数据处理》

了解即可,用panads

一、numpy读取

1、问题

大多数数据并不是我们自己构造的,而是存在文件当中,需要我们用工具获取

但是numpy其实并不适合用来读取和处理数据,因此我们这里了解相关API,以及numpy不方便的地方即可

2、np.genfromtxt(fname, dtype, comments, delimiter, ...)

说明:

fname:文件名,也可以是字符串、列表、StringIO对象、迭代器等,如果是文件名是 '.gz' or '.bz2',还可以自动解压处理

dtype:指定数据类型(不同类型需要指定)

delimiter:分隔符(比如一般使用",")

3、例子

python 复制代码
id,value1,value2,value3
1,123,1.4,23
2,110,,10
3,,2.1,19
python 复制代码
# numpy读取
data = np.genfromtxt(fname="test.csv", delimiter=",")

data

但是有问题,第一行字符串没有读出来

numpy是运算工具,所以不支持读取字符串

二、如何处理缺失值

1、什么是缺失值

什么时候numpy中会出现nan:当我们读取本地的文件为float的时候,如果为空,就会出现nan。或者读取字符串也会出现nan

2、缺失值处理

那么,在一组数据中单纯的把nan替换为0,合适吗?会带来什么样的影响?

比如,全部替换为0后,替换之前的平均值如果大于0,替换之后的均值肯定会变小,所以更一般的方式是把缺失的数值替换为均值(或中值)或者直接删除有缺失值的一行

3、替换/插补法

求这一列的平均值或者中位数

也很麻烦,用pandas

4、如何删除有缺失值的那一行(列)

在pandas中介绍

相关推荐
布说在见3 小时前
魅力标签云,奇幻词云图 —— 数据可视化新境界
信息可视化·数据挖掘·数据分析
Tianyanxiao4 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
FIT2CLOUD飞致云5 小时前
仪表板展示|DataEase看中国:历年双十一电商销售数据分析
数据分析·开源·数据可视化·dataease·双十一
皓7415 小时前
服饰电商行业知识管理的创新实践与知识中台的重要性
大数据·人工智能·科技·数据分析·零售
菜鸟的人工智能之路6 小时前
桑基图在医学数据分析中的更复杂应用示例
python·数据分析·健康医疗
阡之尘埃13 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
布说在见15 小时前
层次与网络的视觉对话:树图与力引导布局的双剑合璧
信息可视化·数据挖掘·数据分析
全栈开发圈1 天前
新书速览|Spark SQL大数据分析快速上手
sql·数据分析·spark
spssau1 天前
多分类logistic回归分析案例教程
分类·数据挖掘·数据分析·回归·回归分析·logistic回归·spssau
我就说好玩1 天前
2020年美国总统大选数据分析与模型预测
大数据·python·数据挖掘·数据分析·pandas·sklearn