人工智能如何重塑金融服务业

在体验优先的世界中识别金融服务业中的AI使用场景

人工智能(AI)作为主要行业的大型组织的重要业务驱动力,持续受到关注。众所周知,传统金融服务业在采用新技术方面相对滞后,一些组织使用的还是上世纪50年代和60年代发明的、在COBOL或Fortran上运行的软件。最近,由于金融科技的崛起和越来越多AI应用的应运而生,金融服务业也开始加速人工智能对所有关键业务功能的投资。但是如何识别金融服务业中正确的AI使用场景呢?虽然内部效率用例可能会在短期内取得巨大的成功,但事实上,将注意力集中在客户体验上可能是未来的竞争优势。

金融数字化竞赛

随着数字化经济的发展,金融服务业正在经历一场深刻的变革,甚至早在AI被引入金融领域之前情况就是如此。在金融服务机构中,往往最后革新核心业务功能,若这些功能平稳运行数年,情况就尤为如此。 无论如何,消费者现在希望在线提供银行、保险和投资等服务。这些服务的快速数字化一直是许多金融服务机构面临的挑战,而他们在技术领域可能还没有占据一席之地。然而,跟上客户的需求,寻找机会去吸引和留住客户是值得的。 在当今的金融领域,成功取决于数据,而拥有实体组件的产品也越来越少。这一点以及快速准确处理数据的需求,使整个行业充满了AI的机会。随着企业希望利用AI,对AI人才的竞争也日趋激烈。MMC Ventures指出,科技和金融服务公司目前正在收揽60%的AI人才。 为了继续从竞争对手中脱颖而出,并在未来以更快的速度发展,供应商应考虑金融服务业的战略性AI使用场景,这些用例将帮助改变市场认知,为客户提供价值,并提高生产力------利用供应商填补人才缺口并实现规模化。

AI和客户体验在哪里交汇?

AI和ML(机器学习)在金融领域的潜在使用案例范围是巨大的。在金融科技领域,我们看到核心产品应用、会计、支付等领域的机遇。在银行和投资领域,AI已被用于聊天机器人和欺诈检测。保险供应商正在投资AI解决方案,用于索赔管理、政策管理等方面的支持。 尽管金融科技、银行、投资和保险的业务用例越来越多样化,但以消费者体验为中心的应用(如个性化旅程、信贷应用、索赔管理、更智能化的聊天机器人程序、代理助理)似乎是最常见、最成功的大规模部署应用。为此,各公司通常不得不与多个供应商和应用合作,收集、标注、准备和汇集所有数据,以有效地训练他们的AI模型,并将其部署到生产中。 然而,在金融服务业发展AI也面临诸多挑战。与政府或医疗应用类似,它们经常涉及利用与机密或个人识别信息(PII)混合的数据。当然,希望实施AI的公司需要找到某种解决方案,既能创建准确的训练数据,又能满足安全需求,并得到大规模的人工验证。这会使寻找合适的合作伙伴支持变得困难,在具有非常特定的PII规则的限制性地区中尤为如此。 幸运的是,公司现在所选用的数据供应商能够确保数据保留在本地,提供私有云和本地部署服务从而确保合规以及对数据使用方式的控制,使用安全的数字工作区等其他协议,并通过了GDPR、CCPA和ISO认证。 随着对个性化服务的需求不断增长,投资AI、寻找支持增强安全协议的数据采集和标注合作伙伴,将是在金融服务领域取得成功的关键。

相关推荐
文心快码 Baidu Comate3 分钟前
打破视障壁垒,百度文心快码无障碍版本助力视障IT从业者就业无“碍”
人工智能·ai编程·文心快码·智能编程助手·智能代码助手
诚威_lol_中大努力中10 分钟前
关于pytorch3d的安装
人工智能·pytorch·python
herogus丶32 分钟前
【Spring AI】Spring AI Alibaba的简单使用
java·人工智能·spring·ai
dundunmm1 小时前
机器学习之pandas
人工智能·python·机器学习·数据挖掘·pandas
小火炉Q1 小时前
16 循环语句——for循环
人工智能·python·网络安全
88号技师2 小时前
真实环境下实车运行,新能源汽车锂离子电池数据集
人工智能·电动汽车·电池状态估计
原点安全2 小时前
“鼎和财险一体化数据安全管控实践”入选信通院金融领域优秀案例
大数据·人工智能·金融
AI_NEW_COME2 小时前
解锁金融新纪元:内部知识库的深度挖掘与战略价值
金融
吃个糖糖2 小时前
37 Opencv SIFT 特征检测
人工智能·opencv·计算机视觉
麦田里的稻草人w2 小时前
【YOLO】(基础篇一)YOLO介绍
人工智能·python·神经网络·yolo·机器学习