【深度学习】各领域常用的损失函数汇总(2024最新版)

目录

[1、L1 损失、平均绝对误差(L1 Loss、Mean Absolute Error,MAE)](#1、L1 损失、平均绝对误差(L1 Loss、Mean Absolute Error,MAE))

[2、L2 损失、均方误差(L2 Loss、Mean Squared Error,MSE)](#2、L2 损失、均方误差(L2 Loss、Mean Squared Error,MSE))

[3、交叉熵损失(Cross-Entropy Loss)](#3、交叉熵损失(Cross-Entropy Loss))

[4、混合损失(Combined Losses)](#4、混合损失(Combined Losses))

[5、Dice Loss 或 IoU Loss](#5、Dice Loss 或 IoU Loss)

[6、对抗损失(Adversarial Loss)](#6、对抗损失(Adversarial Loss))

[7、对比损失(Contrastive Loss)/ 三重损失(Triplet Loss)](#7、对比损失(Contrastive Loss)/ 三重损失(Triplet Loss))

以下是一些常用的损失函数,可根据不同的应用场景进行选择和组合:

1、L1 损失、平均绝对误差(L1 Loss、Mean Absolute Error,MAE)

适用于回归任务,L1 损失计算预测值与真实值之间差的绝对值,对异常值不那么敏感。

其中,是样本数量, 是第 个样本的真实值, 是第 个样本的预测值。

L1 损失 更适合处理异常值,因为它不会像 L2 损失那样对较大的误差赋予过高的惩罚。

2、L2 损失、均方误差**(L2 Loss、Mean Squared Error,MSE)**

适用于回归任务,L2 损失计算预测值与真实值之差的平方,适用于输出连续值的任务。

其中,是样本数量, 是第 个样本的真实值, 是第 个样本的预测值。

L2 损失 通常会导致模型在预测时试图最小化所有样本误差的平方和,这可能导致模型对异常值过于敏感。

这张图展示了 L1 损失(绝对误差损失)和 L2 损失(均方误差损失)随预测误差变化的情况:

L1 损失在误差为零的地方形成了一个角点,其余部分是线性的。

L2 损失在误差为零时更加平滑,但随着误差的增大,损失的增速比 L1 损失快得多。

所以 L1 损失对于大误差的惩罚相对较小,而 L2 损失对于大误差的惩罚更为严厉。 ​

3、交叉熵损失(Cross-Entropy Loss)

适用于分类任务,对于二分类问题,可以使用二元交叉熵(Binary Cross-Entropy),又称作对数损失;

其中 是损失函数, 是样本的数量, 是第 个样本的真实标签(0或1), 是第 个样本的预测概率。

对于多分类问题,使用多类别交叉熵(Categorical Cross-Entropy)。

4、混合损失(Combined Losses)

在某些情况下,你可能需要结合多种损失函数。例如,在一个多任务学习场景中,你可以将 MSE 用于回归任务的输出,同时将交叉熵用于分类任务的输出。

5、Dice Loss 或 IoU Loss

在图像分割任务中常用,尤其是当类别不平衡时。这些损失函数关注预测区域与真实区域的重叠程度。

6、对抗损失(Adversarial Loss)

在使用生成对抗网络(GANs)的应用中常见,例如风格转换或图像生成任务。

7、对比损失(Contrastive Loss)/ 三重损失(Triplet Loss)

在度量学习和某些类型的嵌入学习中使用,特别是在需要学习输入之间关系的场景中。

在实际应用中,可以根据任务的具体需求和网络的输出特性选择合适的损失函数,甚至可以设计自定义的损失函数以更好地适应特定的应用场景。同时,还可以对不同输出的损失进行加权,以反映不同任务的重要性。

相关推荐
阿里云大数据AI技术2 分钟前
AI刷新赛事体验,PAI-ArtLab支撑“我的NBA AI手办”互动
人工智能
zhy2956315 分钟前
【DNN】基础环境搭建
人工智能·tensorrt·cuda·开发环境·cudnn
PKNLP17 分钟前
NLP入门
人工智能·自然语言处理
Mr.Lee jack19 分钟前
体验GPT-OSS-120B:在PH8平台上探索超大规模语言模型的强大能力
人工智能·gpt·语言模型·openai·deepseek
余衫马20 分钟前
大语言模型(LLM)领域细分方向解析
人工智能·语言模型·自然语言处理·llm·领域方向
小关会打代码22 分钟前
自然语言处理(NLP)之分词
人工智能·自然语言处理
阿里-于怀23 分钟前
阿里云发布《AI 原生应用架构白皮书》
人工智能·阿里云·ai·架构·白皮书·ai原生
AI新兵24 分钟前
AI大事记12:Transformer 架构——重塑 NLP 的革命性技术(中)
人工智能·自然语言处理·transformer
开放知识图谱24 分钟前
论文浅尝 | 基于知识的视觉问答中模态感知与大语言模型的集成(ACL2024)
人工智能·语言模型·自然语言处理
赴33524 分钟前
LSTM自然语言处理情感分析项目(四)整合调用各类与方法形成主程序
人工智能·自然语言处理·lstm