卷积核到底要不要反转

大家好啊,我是董董灿。

之前写过很多次的卷积算法了,也包括了一些卷积的变种如分组卷积,感兴趣的话可以在公众号中搜索一下"卷积"关键字。

但有一点没有涉及过,那就是------为什么有些文章在介绍卷积时,会强调卷积核需要先旋转 180 度,然后再做卷积运算,而大部分文章又把这个操作给忽略了呢?

今天就一起来了解一下这个事情的来龙去脉吧。

1、先看下信号处理中的卷积

在信号处理中,卷积是一种数学运算,用于接受两个信号(如输入信号和系统响应),从而产生第三个信号,也就是输出。

在这种情况下卷积核是需要旋转 180 度的,我们从卷积的数学定义来看一下:

在连续时间信号处理中,两个函数 f(t) 和 g(t) 的卷积定义为:

在这两个公式中,注意 g(t - tau) 表示函数 g 相对于 f 的位移,并且有一个"反转"的过程。

这个反转是卷积操作的一个关键特性。

为什么需要 180 度旋转呢? 这部分有点枯燥,可跳过不看。

1、时间反转

在信号处理的卷积过程中,我们实际上是在对一个函数进行时间反转(即180度旋转),然后将其沿时间轴移动。

这是因为卷积就是在测量两个信号之间的重叠:一个信号在固定不动,另一个信号则翻转并滑过它。

2、数学的一致性

从数学的角度看,卷积运算的定义包括了这个反转步骤。

它确保了卷积运算符合其他数学性质,如结合律和交换律,这在理论分析和信号处理应用中都是有益的。

总而言之,信号处理中卷积核需要进行180度旋转的原因,是出于定义和数学计算的需要。

因此,如果你用 scypi 库中的 signal 模块来计算卷积,是有 180 度反转过程的,因为 scypi 中的计算是严格遵循数学定义的。

python 复制代码
from scipy import 
signalR = signal.convolve2d(input, kernel)

2. 为什么深度学习中的卷积不需要反转?

在很多介绍深度学习卷积算法的文章中,几乎很少有介绍要先对卷积核反转,然后再进行计算的操作。

但是会偶尔有几篇文章提到,让不少人产生了疑惑,为啥有时需要,有时又都故意忽略了呢?

看了这篇文章后,其实不用再疑惑,这个很好理解,首先在深度学习中,卷积算法依然需要旋转。

但是,深度学习中的卷积有一点要比信号处理中的卷积简洁很多,那就是卷积核的参数是可以学习的。

假设我们认为卷积核是需要旋转再进行计算的,那么我们同样可以认为模型学到的卷积核参数就是旋转之后的。

正是在深度学习中,卷积核的这种可学习性,可以让我们直接忽略卷积核的旋转操作。

无论卷积核是正着,还是反着,模型都会学习到最佳的卷积核形态,模型都会以最有效的方式来提取特征。

正因如此,深度学习中的卷积,就直接简化成了卷积核在输入图像上滑窗做乘累加运算,而不再需要像传统卷积那样进行 180 度旋转。

相关推荐
mit6.82411 小时前
数位dp|组合数学|差分emplace
算法
2301_7644413311 小时前
新能源汽车电磁辐射高级预测
python·算法·数学建模·汽车
Keep_Trying_Go11 小时前
论文Leveraging Unlabeled Data for Crowd Counting by Learning to Rank算法详解
人工智能·pytorch·深度学习·算法·人群计数
仟濹11 小时前
【C/C++】经典高精度算法 5道题 加减乘除「复习」
c语言·c++·算法
顾安r11 小时前
11.21 脚本 网页优化
linux·前端·javascript·算法·html
WolfGang00732112 小时前
代码随想录算法训练营Day27 | 56.合并区间、738.单调递增的数字、968.监控二叉树
算法
信奥卷王13 小时前
2025年9月GESPC++三级真题解析(含视频)
开发语言·c++·算法
努力学习的小廉13 小时前
我爱学算法之—— BFS之FLoodFill算法
算法·宽度优先
天选之女wow13 小时前
【Hard——Day8】65.有效数字、68.文本左右对齐、76.最小覆盖子串
linux·运维·redis·算法·leetcode
AI大模型学徒13 小时前
NLP基础(八)_马尔可夫模型
算法·机器学习·自然语言处理·nlp·概率论·马尔可夫模型