PyTorch|transforms

在将图片输入到神经网络进行训练时,一般都需要对输入的图像进行预处理。对图片进行操作有很多种方法,这里我们使用torchvision库的transforms模块

tansforms有很多种方法(一些可以用在张量和PIL图像,一些仅能用于张量,而另一些仅能用于PIL图像),这些方法极大的为我们的图片处理工作提供了便利。

我们使用PIL库读取一个图片,在调用transform的Resize方法,改变图片的大小:

复制代码
>>> from PIL import Image>>> from torchvision import transforms>>> path="E:\\3-10\\dogandcats\\train\\cat13.0.jpg">>> img=Image.open(path)>>> img.size(700, 467)>>> process=transforms.Resize((28,28))>>> img2=process(img)>>> img2.size(28, 28)

同样,我们还可以把原始的图片数据转换为张量:​​​​​​​

复制代码
>>> process=transforms.ToTensor()>>> imgdata=process(img)>>> imgdata.size()torch.Size([3, 467, 700])

同样,归一化也变得非常的容易​​​​​​​

复制代码
>>> process=transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))>>> process(img)

当然,我们对图片预处理时可能不仅仅使用一种方法,那么有没有一种方法将这些操作整合到一起呢?显然,库的作者早已考虑到,并且已经实现了此功能。

借助Compose方法,我们可以集成上述操作。​​​​​​​

复制代码
>>> process=transforms.Compose([transforms.Resize((28,28)),              transforms.ToTensor(),              transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])>>> process(img)

当然,transforms提供了多种对图片数据操作的方法,详细的可以看这里:

https://pytorch.org/vision/stable/transforms.html

到了这里,你已经对图像处理有了一定的了解,好吧,那么让我们回到上一篇文章:卷积神经网络|制作自己的Dataset

在这里,我们实现了自己的数据集,在__init__方法,有两个参数分别叫做transform,和label_transform,分别对图片和图片标签进行处理,默认为none,也就是无操作。

这时,很明显,我们可以传入对图片的一系列操作,就像这样:​​​​​​​

复制代码
path="E:\\3-10\\dogandcats\\train"training_data=MyDataset(path,transform=transforms.Compose([    transforms.Resize((16,16)),    transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))    ]))

到这里,对于自己数据集的准备工作基本已经完成!

相关推荐
weixin_43520816几秒前
如何使用 Qwen3 实现 Agentic RAG?
人工智能·深度学习·自然语言处理·aigc
CS创新实验室5 分钟前
研读论文《Attention Is All You Need》(3)
人工智能·论文·transformer·注意力
AORO_BEIDOU5 分钟前
防爆手机与普通手机有什么区别
人工智能·5g·安全·智能手机·信息与通信
暴龙胡乱写博客5 分钟前
机器学习 --- 数据集
人工智能·机器学习
红衣小蛇妖8 分钟前
Python基础学习-Day23
开发语言·python·学习
唐天下文化8 分钟前
居然智家亮相全零售AI火花大会 AI大模型赋能家居新零售的进阶之路
大数据·人工智能·零售
gaosushexiangji24 分钟前
应用探析|千眼狼PIV测量系统在职业病防治中的应用
大数据·人工智能·科技·数码相机
Hello world.Joey38 分钟前
数据挖掘入门-二手车交易价格预测
人工智能·python·数据挖掘·数据分析·conda·pandas
愚公搬代码41 分钟前
【愚公系列】《Manus极简入门》036-物联网系统架构师:“万物互联师”
人工智能·物联网·系统架构·agi·ai agent·智能体·manus
刘延林.42 分钟前
树莓5安装 PyCharm 进行python脚本开发
ide·python·pycharm