PyTorch|transforms

在将图片输入到神经网络进行训练时,一般都需要对输入的图像进行预处理。对图片进行操作有很多种方法,这里我们使用torchvision库的transforms模块

tansforms有很多种方法(一些可以用在张量和PIL图像,一些仅能用于张量,而另一些仅能用于PIL图像),这些方法极大的为我们的图片处理工作提供了便利。

我们使用PIL库读取一个图片,在调用transform的Resize方法,改变图片的大小:

复制代码
>>> from PIL import Image>>> from torchvision import transforms>>> path="E:\\3-10\\dogandcats\\train\\cat13.0.jpg">>> img=Image.open(path)>>> img.size(700, 467)>>> process=transforms.Resize((28,28))>>> img2=process(img)>>> img2.size(28, 28)

同样,我们还可以把原始的图片数据转换为张量:​​​​​​​

复制代码
>>> process=transforms.ToTensor()>>> imgdata=process(img)>>> imgdata.size()torch.Size([3, 467, 700])

同样,归一化也变得非常的容易​​​​​​​

复制代码
>>> process=transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))>>> process(img)

当然,我们对图片预处理时可能不仅仅使用一种方法,那么有没有一种方法将这些操作整合到一起呢?显然,库的作者早已考虑到,并且已经实现了此功能。

借助Compose方法,我们可以集成上述操作。​​​​​​​

复制代码
>>> process=transforms.Compose([transforms.Resize((28,28)),              transforms.ToTensor(),              transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])>>> process(img)

当然,transforms提供了多种对图片数据操作的方法,详细的可以看这里:

https://pytorch.org/vision/stable/transforms.html

到了这里,你已经对图像处理有了一定的了解,好吧,那么让我们回到上一篇文章:卷积神经网络|制作自己的Dataset

在这里,我们实现了自己的数据集,在__init__方法,有两个参数分别叫做transform,和label_transform,分别对图片和图片标签进行处理,默认为none,也就是无操作。

这时,很明显,我们可以传入对图片的一系列操作,就像这样:​​​​​​​

复制代码
path="E:\\3-10\\dogandcats\\train"training_data=MyDataset(path,transform=transforms.Compose([    transforms.Resize((16,16)),    transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))    ]))

到这里,对于自己数据集的准备工作基本已经完成!

相关推荐
生命是有光的2 小时前
【机器学习】机器学习算法
人工智能·机器学习
Blossom.1182 小时前
把 AI 塞进「自行车码表」——基于 MEMS 的 3D 地形预测码表
人工智能·python·深度学习·opencv·机器学习·计算机视觉·3d
小鹿的工作手帐5 小时前
有鹿机器人:为城市描绘清洁新图景的智能使者
人工智能·科技·机器人
蒋星熠6 小时前
区块链技术探索与应用:从密码学奇迹到产业变革引擎
python·语言模型·web3·去中心化·区块链·密码学·智能合约
TechubNews6 小时前
香港数字资产交易市场蓬勃发展,监管与创新并驾齐驱
人工智能·区块链
DogDaoDao7 小时前
用PyTorch实现多类图像分类:从原理到实际操作
图像处理·人工智能·pytorch·python·深度学习·分类·图像分类
小和尚同志7 小时前
450 star 的神级提示词管理工具 AI-Gist,让提示词不再吃灰
人工智能·aigc
默归7 小时前
分治法——二分答案
python·算法
麻雀无能为力8 小时前
python自学笔记14 NumPy 线性代数
笔记·python·numpy
金井PRATHAMA8 小时前
大脑的藏宝图——神经科学如何为自然语言处理(NLP)的深度语义理解绘制新航线
人工智能·自然语言处理