PyTorch|transforms

在将图片输入到神经网络进行训练时,一般都需要对输入的图像进行预处理。对图片进行操作有很多种方法,这里我们使用torchvision库的transforms模块

tansforms有很多种方法(一些可以用在张量和PIL图像,一些仅能用于张量,而另一些仅能用于PIL图像),这些方法极大的为我们的图片处理工作提供了便利。

我们使用PIL库读取一个图片,在调用transform的Resize方法,改变图片的大小:

复制代码
>>> from PIL import Image>>> from torchvision import transforms>>> path="E:\\3-10\\dogandcats\\train\\cat13.0.jpg">>> img=Image.open(path)>>> img.size(700, 467)>>> process=transforms.Resize((28,28))>>> img2=process(img)>>> img2.size(28, 28)

同样,我们还可以把原始的图片数据转换为张量:​​​​​​​

复制代码
>>> process=transforms.ToTensor()>>> imgdata=process(img)>>> imgdata.size()torch.Size([3, 467, 700])

同样,归一化也变得非常的容易​​​​​​​

复制代码
>>> process=transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))>>> process(img)

当然,我们对图片预处理时可能不仅仅使用一种方法,那么有没有一种方法将这些操作整合到一起呢?显然,库的作者早已考虑到,并且已经实现了此功能。

借助Compose方法,我们可以集成上述操作。​​​​​​​

复制代码
>>> process=transforms.Compose([transforms.Resize((28,28)),              transforms.ToTensor(),              transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])>>> process(img)

当然,transforms提供了多种对图片数据操作的方法,详细的可以看这里:

https://pytorch.org/vision/stable/transforms.html

到了这里,你已经对图像处理有了一定的了解,好吧,那么让我们回到上一篇文章:卷积神经网络|制作自己的Dataset

在这里,我们实现了自己的数据集,在__init__方法,有两个参数分别叫做transform,和label_transform,分别对图片和图片标签进行处理,默认为none,也就是无操作。

这时,很明显,我们可以传入对图片的一系列操作,就像这样:​​​​​​​

复制代码
path="E:\\3-10\\dogandcats\\train"training_data=MyDataset(path,transform=transforms.Compose([    transforms.Resize((16,16)),    transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))    ]))

到这里,对于自己数据集的准备工作基本已经完成!

相关推荐
天雪浪子19 小时前
Python入门教程之赋值运算符
开发语言·python
苏苏susuus19 小时前
NLP:Transformer之self-attention(特别分享3)
人工智能·自然语言处理·transformer
猫天意19 小时前
【目标检测】metrice_curve和loss_curve对比图可视化
人工智能·深度学习·目标检测·计算机视觉·cv
站大爷IP19 小时前
5个技巧写出专业Python代码:从新手到进阶的实用指南
python
山烛19 小时前
OpenCV:图像透视变换
人工智能·opencv·计算机视觉·图像透视变换
hrrrrb20 小时前
【Python】字符串
java·前端·python
艾醒(AiXing-w)20 小时前
探索大语言模型(LLM):Ollama快速安装部署及使用(含Linux环境下离线安装)
linux·人工智能·语言模型
月小水长20 小时前
大模型接入自定义 MCP Server,我开发了个免费使用的基金涨跌归纳和归因分析的 Agent
人工智能·后端
大翻哥哥20 小时前
Python 2025:低代码开发与自动化运维的新纪元
运维·python·低代码
咏方舟【长江支流】20 小时前
AI+华为HarmonyOS开发工具DevEco Studio详细安装指南
人工智能·华为·移动开发·harmonyos·arkts·deveco studio·长江支流