PyTorch|transforms

在将图片输入到神经网络进行训练时,一般都需要对输入的图像进行预处理。对图片进行操作有很多种方法,这里我们使用torchvision库的transforms模块

tansforms有很多种方法(一些可以用在张量和PIL图像,一些仅能用于张量,而另一些仅能用于PIL图像),这些方法极大的为我们的图片处理工作提供了便利。

我们使用PIL库读取一个图片,在调用transform的Resize方法,改变图片的大小:

复制代码
>>> from PIL import Image>>> from torchvision import transforms>>> path="E:\\3-10\\dogandcats\\train\\cat13.0.jpg">>> img=Image.open(path)>>> img.size(700, 467)>>> process=transforms.Resize((28,28))>>> img2=process(img)>>> img2.size(28, 28)

同样,我们还可以把原始的图片数据转换为张量:​​​​​​​

复制代码
>>> process=transforms.ToTensor()>>> imgdata=process(img)>>> imgdata.size()torch.Size([3, 467, 700])

同样,归一化也变得非常的容易​​​​​​​

复制代码
>>> process=transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))>>> process(img)

当然,我们对图片预处理时可能不仅仅使用一种方法,那么有没有一种方法将这些操作整合到一起呢?显然,库的作者早已考虑到,并且已经实现了此功能。

借助Compose方法,我们可以集成上述操作。​​​​​​​

复制代码
>>> process=transforms.Compose([transforms.Resize((28,28)),              transforms.ToTensor(),              transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])>>> process(img)

当然,transforms提供了多种对图片数据操作的方法,详细的可以看这里:

https://pytorch.org/vision/stable/transforms.html

到了这里,你已经对图像处理有了一定的了解,好吧,那么让我们回到上一篇文章:卷积神经网络|制作自己的Dataset

在这里,我们实现了自己的数据集,在__init__方法,有两个参数分别叫做transform,和label_transform,分别对图片和图片标签进行处理,默认为none,也就是无操作。

这时,很明显,我们可以传入对图片的一系列操作,就像这样:​​​​​​​

复制代码
path="E:\\3-10\\dogandcats\\train"training_data=MyDataset(path,transform=transforms.Compose([    transforms.Resize((16,16)),    transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))    ]))

到这里,对于自己数据集的准备工作基本已经完成!

相关推荐
在美的苦命程序员几秒前
中文语境下的视频生成革命:百度 MuseSteamer 的“产品级落地”启示录
人工智能·百度
___波子 Pro Max.15 分钟前
GitHub Actions配置python flake8和black
python·black·flake8
kngines17 分钟前
【字节跳动】数据挖掘面试题0007:Kmeans原理,何时停止迭代
人工智能·数据挖掘·kmeans
Kali_0720 分钟前
使用 Mathematical_Expression 从零开始实现数学题目的作答小游戏【可复制代码】
java·人工智能·免费
贾全26 分钟前
第十章:HIL-SERL 真实机器人训练实战
人工智能·深度学习·算法·机器学习·机器人
每日摸鱼大王32 分钟前
互联网摸鱼日报(2025-07-01)
人工智能
GIS小天41 分钟前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年7月4日第128弹
人工智能·算法·机器学习·彩票
我是小哪吒2.01 小时前
书籍推荐-《对抗机器学习:攻击面、防御机制与人工智能中的学习理论》
人工智能·深度学习·学习·机器学习·ai·语言模型·大模型
慕婉03071 小时前
深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
人工智能·深度学习·机器学习
阿蒙Amon1 小时前
【Python小工具】使用 OpenCV 获取视频时长的详细指南
python·opencv·音视频