构建LangChain应用出现的TypeError错误

在阅读LangChain官网给出的一些案列时,实际运行却报错,案列代码如下:

python 复制代码
from langchain.prompts import ChatPromptTemplate
from langchain_community.chat_models import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser

prompt = ChatPromptTemplate.from_template("tell me a short joke about {topic}")
model = ChatOpenAI()
output_parser = StrOutputParser()

chain = prompt | model | output_parser

chain.invoke({"topic": "ice cream"})

错误1:TypeError: Expected a Runnable, callable or dict.Instead got an unsupported type: <class 'langchain_core.output_parsers.string.StrOutputParser'>

完整报错信息如下:

bash 复制代码
Traceback (most recent call last):
  File "~/PycharmProjects/LangChain/main.py", line 14, in <module>
    chain = prompt | model | output_parser
  File "~/opt/anaconda3/envs/langchain/lib/python3.8/site-packages/langchain/schema/runnable/base.py", line 1165, in __or__
    last=coerce_to_runnable(other),
  File "~/opt/anaconda3/envs/langchain/lib/python3.8/site-packages/langchain/schema/runnable/base.py", line 2774, in coerce_to_runnable
    raise TypeError(
TypeError: Expected a Runnable, callable or dict.Instead got an unsupported type: <class 'langchain_core.output_parsers.string.StrOutputParser'>

出现这个错误的原因是因为输出解析器不正确,不支持StrOutputParser而是要使用BaseOutputParser,因此我们可以自己来实现一个BaseOutputParser:

如下:

python 复制代码
class CommaSeparatedListOutputParser(BaseOutputParser):
    """Parse the output of an LLM call to a comma-separated list."""

    def parse(self, text: str):
        """Parse the output of an LLM call."""

        return text.strip()

即更新代码如下:

python 复制代码
import os
from langchain.prompts import ChatPromptTemplate
from langchain_community.chat_models import ChatOpenAI
from langchain.schema import BaseOutputParser

os.environ["OPENAI_API_KEY"] = "xxx"

class CommaSeparatedListOutputParser(BaseOutputParser):
    """Parse the output of an LLM call to a comma-separated list."""

    def parse(self, text: str):
        """Parse the output of an LLM call."""

        return text.strip()


prompt = ChatPromptTemplate.from_template("tell me a short joke about {topic}")
model = ChatOpenAI()
output_parser = CommaSeparatedListOutputParser()

chain = prompt | model | output_parser

chain.invoke({"topic": "ice cream"})

仍然报错2

错误2:TypeError: Got unknown type ('messages', [HumanMessage(content='tell me a short joke about ice cream')])

错误原因是引入ChatOpenAI的包不对,原始的引入是from langchain_community.chat_models import ChatOpenAI改为from langchain.chat_models import ChatOpenAI即可,修改上面2处问题后,即可正确运行代码

完整正确的代码如下

python 复制代码
import os
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema import BaseOutputParser

os.environ["OPENAI_API_KEY"] = "xxx"


class CommaSeparatedListOutputParser(BaseOutputParser):
    """Parse the output of an LLM call to a comma-separated list."""

    def parse(self, text: str):
        """Parse the output of an LLM call."""

        return text.strip()


prompt = ChatPromptTemplate.from_template("tell me a short joke about {topic}")
model = ChatOpenAI()
output_parser = CommaSeparatedListOutputParser()

chain = prompt | model | output_parser

res = chain.invoke({"topic": "ice cream"})
print(res)

输出:

bash 复制代码
Why did the ice cream go to therapy?
Because it had too many toppings and couldn't keep its sprinkles together!
相关推荐
我想问问天2 分钟前
【从0到1大模型应用开发实战】02|用 LangChain 和本地大模型,完成第一次“可控对话
后端·langchain·aigc
NiceAsiv7 分钟前
VSCode之打开python终端 取消conda activate的powershell弹窗
vscode·python·conda
蔚说18 分钟前
is 与 == 的区别 python
python
cnxy18821 分钟前
围棋对弈Python程序开发完整指南:步骤3 - 气(Liberties)的计算算法设计
python·算法·深度优先
叶子20242238 分钟前
骨架点排序计算
python
AC赳赳老秦1 小时前
行业数据 benchmark 对比:DeepSeek上传数据生成竞品差距分析报告
开发语言·网络·人工智能·python·matplotlib·涛思数据·deepseek
小鸡吃米…1 小时前
带Python的人工智能——深度学习
人工智能·python·深度学习
胡伯来了1 小时前
07 - 数据收集 - 网页采集工具Scrapy
python·scrapy·数据采集
御水流红叶1 小时前
第七届金盾杯(第一次比赛)wp
开发语言·python
小徐Chao努力1 小时前
【Langchain4j-Java AI开发】04-AI 服务核心模式
java·人工智能·python