目标检测-One Stage-YOLO v3

文章目录

  • 前言
  • [一、YOLO v3的网络结构和流程](#一、YOLO v3的网络结构和流程)
  • [二、YOLO v3的创新点](#二、YOLO v3的创新点)
  • 总结

前言

根据前文目标检测-One Stage-YOLOv2可以看出YOLOv2的速度和精度都有相当程度的提升,但是精度仍较低,YOLO v3基于一些先进的结构和思想对YOLO v2做了一些改进。


提示:以下是本篇文章正文内容,下面内容和可供参考

一、YOLO v3的网络结构和流程

  1. 将影像输入卷积网络(DarkNet53)+FPN得到多尺度特征图

ps:Darknet53,由Darknet19结合Resnet而成

  1. 利用anchor机制获取预选框
  2. 将上一步得到的anchor输入不同的分类和边框回归器
  3. 使用非极大值抑制NMS去除冗余窗口

二、YOLO v3的创新点

具体来说,没有什么大的创新点,但是结合先进的思想改进了YOLOv2:

  • 将backbone的网络结构进行了改进,将Darknet19结合Resnet(残差块轻量化),变成了Darknet53(Darknet53的性能与ResNet152相似,速度快2倍)
  • 引入多尺度特征图(feature maps),每个尺寸的feature map各司其职,13 × 13负责大目标物体,26 × 26负责中目标物体和52 × 52负责小目标物体。原因很简单,越深层的信息越抽象,越浅层的越粗糙,浅层还保留着小物体的信息,深层就不一定还在了。

ps:和SSD一样,感受野小的feature map检测小目标(较小的scale),使用感受野大的feature map检测更大目标(较大的scale),但加入了特征融合机制。

  • 类别预测方面使用多个逻辑回归分类器(logistic)代替softmax分类器,以此来确定预测框属于多类的可能
  1. softmax(全部类别的概率之和为1)假定全部类别是互斥的,即如果预测框属于类别A,那么就不可能属于类别B
  2. 但面对非互斥类别集时,softmax不能判别多类别归属,比如预测框可能既属于"动物",又属于"狗",尤其对于Open Images这种数据集,目标可能有重叠的类别标签
  3. 因此yolov3使用不同的logistic回归分类器(数量和类别数对应)检验bbox为每个类别的置信度(objectness score),如果超过一定阈值,就可认为bbox属于某个类别,即可实现多类别分类

总结

YOLOv3-320(28.2mAP)与SSD321一样准确(28.0mAP[.5, .95]),但速度快三倍(61ms -> 22ms)

在mAP50上(57.9),YOLOv3-608和当时的SOTA(RetinaNet-101-800)精度一样(57.5),但要快3.8倍(198ms -> 51ms)

相关推荐
小馒头学python2 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯11 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠14 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
Debroon24 分钟前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
小码农<^_^>29 分钟前
优选算法精品课--滑动窗口算法(一)
算法
羊小猪~~31 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨32 分钟前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
晨曦_子画36 分钟前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
道可云38 分钟前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
人工智能培训咨询叶梓1 小时前
探索开放资源上指令微调语言模型的现状
人工智能·语言模型·自然语言处理·性能优化·调优·大模型微调·指令微调