Word2Vector介绍

Word2Vector 2013
word2vec也叫word embeddings ,中文名"词向量 ",google开源的一款用于词向量计算的工具,作用就是将自然语言中的字词转为计算机可以理解的稠密向量 。在word2vec出现之前,自然语言处理经常把字词转为离散的单独的符号,也就是One-Hot Encoder ,为高维稀疏向量。使用Vector Representations可以有效解决这个问题。Word2Vec可以将One-Hot Encoder转化为低维度的连续值的稠密向量,并且其中意思相近的词将被映射到向量空间中相近的位置 。word2vec词向量可以较好地表达不同词之间的相似和类比关系

Word2Vec是一种将文本中的词进行嵌入(Embedding)的方法,而所谓嵌入,就是将各个词使用一个定长的向量来表示,Embedding其实就是一个映射,将单词从原先所属的空间映射到新的多维空间中,也就是把原先词所在空间嵌入到一个新的空间中去。

word2vec主要分为CBOW(Continuous Bag of Words,连续词袋)和Skip-Gram(跳字模型)两种模式。

(1)CBOW 是从原始语句推测目标字词;通过上下文推测目标词:A person who never input:a, who,never output label:person

(2)Skip-Gram 正好相反,是从目标字词推测出原始语句。通过目标词预测上下文 input:person output label:a, who,never

CBOW对小型数据库比较合适,而Skip-Gram在大型语料中表现更好。

可以推测,如果两个单词的上下文一样,那么意味着这两个单词也应该是相似的。通过这种方法,我们可以获得一个词的扩展词,即与其相似的词。

word2vec训练过程中的两个关键超参数是窗口大小和负样本的数量。

负例采样

较小的窗口大小(2-15),较大的窗口大小(15-50,甚至更多)

Gensim默认为5个负样本。

训练:

1.创建两个矩阵------Embedding矩阵和Context矩阵,这两个矩阵在我们的词汇表中嵌入了每个单词。随机值初始化这些矩阵。

2.计算输入嵌入与每个上下文嵌入的点积and sigmoid 。

3.停止训练过程,丢弃Context矩阵,并使用Embeddings矩阵作为下一项任务的已被训练好的嵌入。

4.增量训练:模型训练以后,会有新的语料,也就存在新词,这个时候新词用word2vec就得不到词向量,会报ovo(out vacbuary)的错误。需要重新训练模型,gensim就提供了一个很好的机制,就是增量训练,新词不用和旧词全部一起训练。

相关推荐
Elastic 中国社区官方博客1 小时前
使用 Discord 和 Elastic Agent Builder A2A 构建游戏社区支持机器人
人工智能·elasticsearch·游戏·搜索引擎·ai·机器人·全文检索
2501_933329552 小时前
企业级AI舆情中台架构实践:Infoseek系统如何实现亿级数据实时监测与智能处置?
人工智能·架构
阿杰学AI2 小时前
AI核心知识70——大语言模型之Context Engineering(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·数据处理·上下文工程
赛博鲁迅2 小时前
物理AI元年:AI走出屏幕进入现实,88API为机器人装上“最强大脑“
人工智能·机器人
管牛牛2 小时前
图像的卷积操作
人工智能·深度学习·计算机视觉
云卓SKYDROID3 小时前
无人机航线辅助模块技术解析
人工智能·无人机·高科技·云卓科技
琅琊榜首20203 小时前
AI生成脑洞付费短篇小说:从灵感触发到内容落地
大数据·人工智能
imbackneverdie3 小时前
近年来,我一直在用的科研工具
人工智能·自然语言处理·aigc·论文·ai写作·学术·ai工具
roman_日积跬步-终至千里4 小时前
【计算机视觉-作业1】从图像到向量:kNN数据预处理完整流程
人工智能·计算机视觉