Word2Vector介绍

Word2Vector 2013
word2vec也叫word embeddings ,中文名"词向量 ",google开源的一款用于词向量计算的工具,作用就是将自然语言中的字词转为计算机可以理解的稠密向量 。在word2vec出现之前,自然语言处理经常把字词转为离散的单独的符号,也就是One-Hot Encoder ,为高维稀疏向量。使用Vector Representations可以有效解决这个问题。Word2Vec可以将One-Hot Encoder转化为低维度的连续值的稠密向量,并且其中意思相近的词将被映射到向量空间中相近的位置 。word2vec词向量可以较好地表达不同词之间的相似和类比关系

Word2Vec是一种将文本中的词进行嵌入(Embedding)的方法,而所谓嵌入,就是将各个词使用一个定长的向量来表示,Embedding其实就是一个映射,将单词从原先所属的空间映射到新的多维空间中,也就是把原先词所在空间嵌入到一个新的空间中去。

word2vec主要分为CBOW(Continuous Bag of Words,连续词袋)和Skip-Gram(跳字模型)两种模式。

(1)CBOW 是从原始语句推测目标字词;通过上下文推测目标词:A person who never input:a, who,never output label:person

(2)Skip-Gram 正好相反,是从目标字词推测出原始语句。通过目标词预测上下文 input:person output label:a, who,never

CBOW对小型数据库比较合适,而Skip-Gram在大型语料中表现更好。

可以推测,如果两个单词的上下文一样,那么意味着这两个单词也应该是相似的。通过这种方法,我们可以获得一个词的扩展词,即与其相似的词。

word2vec训练过程中的两个关键超参数是窗口大小和负样本的数量。

负例采样

较小的窗口大小(2-15),较大的窗口大小(15-50,甚至更多)

Gensim默认为5个负样本。

训练:

1.创建两个矩阵------Embedding矩阵和Context矩阵,这两个矩阵在我们的词汇表中嵌入了每个单词。随机值初始化这些矩阵。

2.计算输入嵌入与每个上下文嵌入的点积and sigmoid 。

3.停止训练过程,丢弃Context矩阵,并使用Embeddings矩阵作为下一项任务的已被训练好的嵌入。

4.增量训练:模型训练以后,会有新的语料,也就存在新词,这个时候新词用word2vec就得不到词向量,会报ovo(out vacbuary)的错误。需要重新训练模型,gensim就提供了一个很好的机制,就是增量训练,新词不用和旧词全部一起训练。

相关推荐
white-persist21 分钟前
MCP协议深度解析:AI时代的通用连接器
网络·人工智能·windows·爬虫·python·自动化
新智元22 分钟前
谷歌杀入诺奖神殿,两年三冠五得主!世界TOP3重现贝尔实验室神话
人工智能·openai
StarPrayers.25 分钟前
卷积层(Convolutional Layer)学习笔记
人工智能·笔记·深度学习·学习·机器学习
skywalk816327 分钟前
AutoCoder Nano 是一款轻量级的编码助手, 利用大型语言模型(LLMs)帮助开发者编写, 理解和修改代码。
人工智能
金井PRATHAMA34 分钟前
描述逻辑对人工智能自然语言处理中深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
却道天凉_好个秋39 分钟前
OpenCV(四):视频采集与保存
人工智能·opencv·音视频
minhuan40 分钟前
构建AI智能体:五十七、LangGraph + Gradio:构建可视化AI工作流的趣味指南
人工智能·语言模型·workflow·langgraph·自定义工作流
WWZZ20251 小时前
ORB_SLAM2原理及代码解析:SetPose() 函数
人工智能·opencv·算法·计算机视觉·机器人·自动驾驶
lisw051 小时前
AIoT(人工智能物联网):融合范式下的技术演进、系统架构与产业变革
大数据·人工智能·物联网·机器学习·软件工程