OpenCV | 光流估计

光流估计

光流是空间运动物体在观测成像平面上的像素运动的"瞬时速度",根据各个像素点的速度的速度矢量特征,可以对图像进行动态分析,例如目标跟踪

  • 高度恒定:同一点随着时间的变化,其亮度不会发生改变。
  • 小运动:随着时间的变化不会引起位置的剧烈变化,只有小运动情况下才能用前后帧之间单位位置变化引起的灰度变化去近似灰度对位置的偏导数。
  • 空间一致:一个场景上临近的点投影到图像上也是临近点,且临近点速度一致,因为光流法基本方程约束只有一个,而要求x,y方向的速度,有两个未知变量, 所以需要联立n多个方程求解。

cv2.calcOpticalFlowPyrlLK(): 参数

  • prevlmage 前一帧图像
  • nextlmage 当前帧图像
  • prevPts 待跟踪的特征点向量
  • winSize 搜索窗口的大小
  • maxLevel 最大的金字塔层数 返回:
  • nextPts 输出跟踪特征点向量
  • status 特征点是否找到,找到的状态为1,未找到的状态为0

test

python 复制代码
import numpy as np
import cv2

cap = cv2.VideoCapture('test.avi')

# 角点检测所需参数
feature_params = dict( maxCorners = 100,
                       qualityLevel = 0.3,
                       minDistance = 7,
                       blockSize = 7 )

# lucas kanade参数
lk_params = dict( winSize  = (15,15),
                  maxLevel = 2,
                  criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))

# 随机颜色条
color = np.random.randint(0,255,(100,3))

# 拿到第一帧图像
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)

# 创建一个mask
mask = np.zeros_like(old_frame)

while(True):
    ret,frame = cap.read()
    frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    # 需要传入前一帧和当前图像
    p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)

    # st=1表示
    good_new = p1[st==1]
    good_old = p0[st==1]

    # draw the tracks
    for i,(new,old) in enumerate(zip(good_new,good_old)):
        a,b = new.ravel()
        c,d = old.ravel()
        mask = cv2.line(mask, (int(a),int(b)),(int(c),int(d)), color[i].tolist(), 2)
        frame = cv2.circle(frame,(int(a),int(b)),5,color[i].tolist(),-1)
    img = cv2.add(frame,mask)

    cv2.imshow('frame',img)
    k = cv2.waitKey(150) & 0xff
    if k == 27:
        break

   #更新
    old_gray = frame_gray.copy()
    p0 = good_new.reshape(-1,1,2)

cv2.destroyAllWindows()
cap.release()

运行后随便截取一帧为:

相关推荐
飞哥数智坊1 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三1 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯2 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet4 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算4 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心5 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar6 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai6 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI7 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear8 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp