OpenCV | 光流估计

光流估计

光流是空间运动物体在观测成像平面上的像素运动的"瞬时速度",根据各个像素点的速度的速度矢量特征,可以对图像进行动态分析,例如目标跟踪

  • 高度恒定:同一点随着时间的变化,其亮度不会发生改变。
  • 小运动:随着时间的变化不会引起位置的剧烈变化,只有小运动情况下才能用前后帧之间单位位置变化引起的灰度变化去近似灰度对位置的偏导数。
  • 空间一致:一个场景上临近的点投影到图像上也是临近点,且临近点速度一致,因为光流法基本方程约束只有一个,而要求x,y方向的速度,有两个未知变量, 所以需要联立n多个方程求解。

cv2.calcOpticalFlowPyrlLK(): 参数

  • prevlmage 前一帧图像
  • nextlmage 当前帧图像
  • prevPts 待跟踪的特征点向量
  • winSize 搜索窗口的大小
  • maxLevel 最大的金字塔层数 返回:
  • nextPts 输出跟踪特征点向量
  • status 特征点是否找到,找到的状态为1,未找到的状态为0

test

python 复制代码
import numpy as np
import cv2

cap = cv2.VideoCapture('test.avi')

# 角点检测所需参数
feature_params = dict( maxCorners = 100,
                       qualityLevel = 0.3,
                       minDistance = 7,
                       blockSize = 7 )

# lucas kanade参数
lk_params = dict( winSize  = (15,15),
                  maxLevel = 2,
                  criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))

# 随机颜色条
color = np.random.randint(0,255,(100,3))

# 拿到第一帧图像
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)

# 创建一个mask
mask = np.zeros_like(old_frame)

while(True):
    ret,frame = cap.read()
    frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    # 需要传入前一帧和当前图像
    p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)

    # st=1表示
    good_new = p1[st==1]
    good_old = p0[st==1]

    # draw the tracks
    for i,(new,old) in enumerate(zip(good_new,good_old)):
        a,b = new.ravel()
        c,d = old.ravel()
        mask = cv2.line(mask, (int(a),int(b)),(int(c),int(d)), color[i].tolist(), 2)
        frame = cv2.circle(frame,(int(a),int(b)),5,color[i].tolist(),-1)
    img = cv2.add(frame,mask)

    cv2.imshow('frame',img)
    k = cv2.waitKey(150) & 0xff
    if k == 27:
        break

   #更新
    old_gray = frame_gray.copy()
    p0 = good_new.reshape(-1,1,2)

cv2.destroyAllWindows()
cap.release()

运行后随便截取一帧为:

相关推荐
لا معنى له4 小时前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
AKAMAI5 小时前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
小a杰.7 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight7 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha7 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir8 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王8 小时前
COCO 数据集
人工智能·机器学习
AI营销实验室9 小时前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技
爱笑的眼睛119 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
tap.AI9 小时前
RAG系列(一) 架构基础与原理
人工智能·架构