U-ViT【All are Worth Words: A ViT Backbone for Diffusion Models】

Motivation

Diffusion中常用的Backbone是UNet,使用 resnettransformer 交替进行的,这样内存memory存储 其实也是不断shuffle变化的,resnet 以 feature 看 memory,而 transformer 以 token 看memory。如果可以统一memory的计算架构,那么memory的view就会好看很多。

用ViT结构代替UNet结构来做扩散模型

U-ViT的一篇同期工作 DiT: Scalable Diffusion Models with Transformers 也提出了使用ViT代替U-Net的思想,不同的是DiT中没有引入long skip connection也依然取得了杰出的效果,且DIT用ViT做 class-label 的 conditional image generation,U-ViT则进一步完成了ViT的 class-label、text、image等任意 的 conditional image generation。

Method

如下图所示,U-ViT 延续了 ViT 的方法,将带噪图片划分为多个patch之后,将时间t条件c图像patch,视作token输入到Transformer block,同时加上position encoding,同时在网络浅层和深层之间引入long skip connection。经过 5 层 transformer block,得到输出的token,经过Linear Layer将token变为patch,最后经过3x3的Conv得到最终的pred_noise image

Ablation Study


可以看出,long skip connection对于图像生成的FID分数是至关重要的。




总结

U-ViT是一种简单且通用的基于ViT的扩散概率模型的主干网络,U-ViT把所有输入,包括图片、时间、条件都当作token输入,并且引入了long skip connection。U-ViT在无条件生成、类别条件生成以及文到图生成上均取得了可比或者优于CNN的结果。

相关推荐
hui函数2 小时前
Flask电影投票系统全解析
后端·python·flask
Moshow郑锴2 小时前
实践题:智能客服机器人设计
人工智能·机器人·智能客服
2501_924889552 小时前
商超高峰客流统计误差↓75%!陌讯多模态融合算法在智慧零售的实战解析
大数据·人工智能·算法·计算机视觉·零售
维基框架3 小时前
维基框架 (Wiki Framework) 1.1.0 版本发布 提供多模型AI辅助开发
人工智能
西猫雷婶3 小时前
神经网络|(十二)概率论基础知识-先验/后验/似然概率基本概念
人工智能·神经网络·机器学习·回归·概率论
闲人编程3 小时前
Python第三方库IPFS-API使用详解:构建去中心化应用的完整指南
开发语言·python·去中心化·内存·寻址·存储·ipfs
计算机编程小咖4 小时前
《基于大数据的农产品交易数据分析与可视化系统》选题不当,毕业答辩可能直接挂科
java·大数据·hadoop·python·数据挖掘·数据分析·spark
居7然4 小时前
大模型微调面试题全解析:从概念到实战
人工智能·微调
zhangfeng11335 小时前
以下是基于图论的归一化切割(Normalized Cut)图像分割工具的完整实现,结合Tkinter界面设计及Python代码示
开发语言·python·图论
haidizym5 小时前
质谱数据分析环节体系整理
大数据·人工智能·数据分析·ai4s