C#利用openvino部署PP-TinyPose人体姿态识别

【官方框架地址】

github.com/PaddlePaddle/PaddleDetection

【算法介绍】

关键点检测算法往往需要部署在轻量化、边缘端设备上,因此长期以来都存在一个难题:精度高、速度则慢、算法体积也随之增加。而PP-TinyPose的出世彻底打破了这个僵局,采用Top-Down的方式,先应用3.3M、150FPS的超轻量检测网络PP-PicoDet 检测出人体,再用基于Lite-HRNet的移动端优化模型,检测对应关键点,由此确保关键点检测的高精度 ,同时扩大数据集,减小输入尺寸,预处理与后处理加入AID、UDP和DARK等策略,保证模型的高性能 。实现速度在FP16下122FPS的情况下,精度也可达到51.8%AP,不仅比其他类似实现速度更快,精度更是提升了130%。

PP-TinyPose除了在日常关键点检测任务上拥有极强的通用性 ,针对小目标出现在大尺幅图像中的产业常见难题场景 完成一系列针对性的优化,从而对小目标进行关键点检测时,依然能保持同样的精度与速。更特别的是,PP-TinyPose还能同时实现多人关键点检测 ,且效果超强!不仅对于检测人数无限制 ,其速度和精度也依旧优秀!与开源界其他类似实现相比,检测人数、精度与性能上均有明显优势

【效果展示】

【实现部分代码】

复制代码
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using OpenCvSharp;

namespace FIRC
{
    public partial class Form1 : Form
    {
        Mat src = new Mat();
        string det_onnx = Application.StartupPath + @"\weights\picodet_v2_s_320_pedestrian\picodet_s_320_lcnet_pedestrian.onnx";
        string pose_onnx = Application.StartupPath + @"\weights\tinypose_256_192\tinypose_256_192.onnx";
        TinyPoseManager tpm = new TinyPoseManager();
        public Form1()
        {
            InitializeComponent();
        }

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog openFileDialog = new OpenFileDialog();
            openFileDialog.Filter = "图文件(*.*)|*.jpg;*.png;*.jpeg;*.bmp";
            openFileDialog.RestoreDirectory = true;
            openFileDialog.Multiselect = false;
            if (openFileDialog.ShowDialog() == DialogResult.OK)
            {
              
                src = Cv2.ImRead(openFileDialog.FileName);
                pictureBox1.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(src);


            }


        }

        private void button2_Click(object sender, EventArgs e)
        {
            if(pictureBox1.Image==null)
            {
                return;
            }
            Stopwatch sw = new Stopwatch();
            sw.Start();
            var resultMat = tpm.Inference(src);
            sw.Stop();
            this.Text = "耗时" + sw.Elapsed.TotalSeconds + "秒";
            pictureBox2.Image= OpenCvSharp.Extensions.BitmapConverter.ToBitmap(resultMat); //Mat转Bitmap
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            tpm.LoadWeights(pose_onnx, det_onnx);

        }

        private void btn_video_Click(object sender, EventArgs e)
        {
 
  
        }
    }
}

【视频演示】

bilibili.com/video/BV1vC4y1e7QL/

【源码下载】

https://download.csdn.net/download/FL1623863129/88700131

【测试环境】

vs2019

netframework4.7.2或者netframework4.8

opencvsharp4.8.0

无需额外安装openvino运行库即可直接运行

【参考文献】

1\] [https://blog.csdn.net/PaddlePaddle/article/details/121623070](https://blog.csdn.net/PaddlePaddle/article/details/121623070 "https://blog.csdn.net/PaddlePaddle/article/details/121623070")

相关推荐
人工智能训练4 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海5 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor6 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19826 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了7 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队7 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒7 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6007 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房7 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20118 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习