9 个让你的 Python 代码更快的小技巧

哈喽大家好,我是咸鱼

我们经常听到 "Python 太慢了","Python 性能不行"这样的观点。但是,只要掌握一些编程技巧,就能大幅提升 Python 的运行速度。

今天就让我们一起来看下让 Python 性能更高的 9 个小技巧

原文链接:

medium.com/techtofreed...

字符串拼接的技巧

如果有大量字符串等待处理,字符串连接将成为 Python 的瓶颈。

一般来讲,Python 中有两种字符串拼接方式:

  • 使用该 join() 函数将字符串列表合并为一个字符串
  • 使用 + or += 符号将每个字符串加成一个

那么哪种方式更快呢?我们一起来看一下

ruby 复制代码
mylist = ["Yang", "Zhou", "is", "writing"]
​
​
# Using '+'
def concat_plus():
    result = ""
    for word in mylist:
        result += word + " "
    return result
​
​
# Using 'join()'
def concat_join():
    return " ".join(mylist)
​
​
# Directly concatenation without the list
def concat_directly():
    return "Yang" + "Zhou" + "is" + "writing"
ini 复制代码
import timeit
​
print(timeit.timeit(concat_plus, number=10000))
# 0.002738415962085128
print(timeit.timeit(concat_join, number=10000))
# 0.0008482920238748193
print(timeit.timeit(concat_directly, number=10000))
# 0.00021425005979835987

如上所示,对于拼接字符串列表, join() 方法比在 for 循环中逐个添加字符串更快。

原因很简单。一方面,字符串是 Python 中的不可变数据,每个 += 操作都会导致创建一个新字符串并复制旧字符串,这会导致非常大的开销。

另一方面,.join() 方法是专门为连接字符串序列而优化的。它预先计算结果字符串的大小,然后一次性构建它。因此,它避免了与循环中 += 操作相关的开销,因此速度更快。

但是,我们发现最快其实是直接用 + 拼接字符串,这是因为:

  • Python 解释器可以在编译时优化字符串的连接,将它们转换为单个字符串。因为没有循环迭代或函数调用,所以它是一个非常高效的操作。
  • 由于所有字符串在编译时都是已知的,因此 Python 可以非常快速地执行此操作,比循环中的运行时连接甚至优化 .join() 方法快得多。

总之,如果需要拼接字符串列表,请选择 join() ;如果直接拼接字符串,只需使用 + 即可。

创建列表的技巧

Python 中创建列表的两种常见方法是:

  • 使用函数 list()
  • [] 直接使用

我们来看下这两种方法的性能

ini 复制代码
import timeit
​
print(timeit.timeit('[]', number=10 ** 7))
# 0.1368238340364769
print(timeit.timeit(list, number=10 ** 7))
# 0.2958830420393497

结果表明,执行 list() 函数比直接使用 [] 要慢。

这是因为 是 [] 字面语法( literal syntax ),而 list() 是构造函数调用。毫无疑问,调用函数需要额外的时间。

同理,在创建字典时,我们也应该利用 {} 而不是 dict()

成员关系测试的技巧

成员关系测试的性能很大程度上取决于底层数据结构

ini 复制代码
import timeit
​
large_dataset = range(100000)
search_element = 2077
​
large_list = list(large_dataset)
large_set = set(large_dataset)
​
​
def list_membership_test():
    return search_element in large_list
​
​
def set_membership_test():
    return search_element in large_set
​
​
print(timeit.timeit(list_membership_test, number=1000))
# 0.01112208398990333
print(timeit.timeit(set_membership_test, number=1000))
# 3.27499583363533e-05

如上面的代码所示,集合中的成员关系测试比列表中的成员关系测试要快得多。

这是为什么呢?

  • 在 Python 列表中,成员关系测试 ( element in list ) 是通过遍历每个元素来完成的,直到找到所需的元素或到达列表的末尾。因此,此操作的时间复杂度为 O(n)。
  • Python 中的集合是作为哈希表实现的。在检查成员资格 ( element in set ) 时,Python 使用哈希机制,其时间复杂度平均为 O(1)。

这里的技巧重点是在编写程序时仔细考虑底层数据结构。利用正确的数据结构可以显著加快我们的代码速度。

使用推导式而不是 for 循环

Python 中有四种类型的推导式:列表、字典、集合和生成器。它们不仅为创建相对数据结构提供了更简洁的语法,而且比使用 for 循环具有更好的性能。

因为它们在 Python 的 C 实现中进行了优化。

python 复制代码
import timeit
​
​
def generate_squares_for_loop():
    squares = []
    for i in range(1000):
        squares.append(i * i)
    return squares
​
​
def generate_squares_comprehension():
    return [i * i for i in range(1000)]
​
​
print(timeit.timeit(generate_squares_for_loop, number=10000))
# 0.2797503340989351
print(timeit.timeit(generate_squares_comprehension, number=10000))
# 0.2364629579242319

上面的代码是列表推导式和 for 循环之间的简单速度比较。如结果所示,列表推导式速度更快。

访问局部变量速度更快

在 Python 中,访问局部变量比访问全局变量或对象的属性更快。

ini 复制代码
import timeit
​
​
class Example:
    def __init__(self):
        self.value = 0
​
​
obj = Example()
​
​
def test_dot_notation():
    for _ in range(1000):
        obj.value += 1
​
​
def test_local_variable():
    value = obj.value
    for _ in range(1000):
        value += 1
    obj.value = value
​
​
print(timeit.timeit(test_dot_notation, number=1000))
# 0.036605041939765215
print(timeit.timeit(test_local_variable, number=1000))
# 0.024470250005833805

原理也很简单:当编译一个函数时,它内部的局部变量是已知的,但其他外部变量需要时间来检索。

优先考虑内置模块和库

当我们讨论 Python 的时候,通常指的是 CPython,因为 CPython 是 Python 语言的默认和使用最广泛的实现。

考虑到它的大多数内置模块和库都是用C语言编写的,C语言是一种更快、更低级的语言,我们应该利用它的内置库,避免重复造轮子。

python 复制代码
import timeit
import random
from collections import Counter
​
​
def count_frequency_custom(lst):
    frequency = {}
    for item in lst:
        if item in frequency:
            frequency[item] += 1
        else:
            frequency[item] = 1
    return frequency
​
​
def count_frequency_builtin(lst):
    return Counter(lst)
​
​
large_list = [random.randint(0, 100) for _ in range(1000)]
​
print(timeit.timeit(lambda: count_frequency_custom(large_list), number=100))
# 0.005160166998393834
print(timeit.timeit(lambda: count_frequency_builtin(large_list), number=100))
# 0.002444291952997446

上面的程序比较了计算列表中元素频率的两种方法。正如我们所看到的,利用 collections 模块的内置计数器比我们自己编写 for 循环更快、更简洁、更好。

使用缓存装饰器

缓存是避免重复计算和提高程序速度的常用技术。

幸运的是,在大多数情况下,我们不需要编写自己的缓存处理代码,因为 Python 提供了一个开箱即用的装饰器 --- @functools.cache

例如,以下代码将执行两个斐波那契数生成函数,一个具有缓存装饰器,但另一个没有:

python 复制代码
import timeit
import functools
​
​
def fibonacci(n):
    if n in (0, 1):
        return n
    return fibonacci(n - 1) + fibonacci(n - 2)
​
​
@functools.cache
def fibonacci_cached(n):
    if n in (0, 1):
        return n
    return fibonacci_cached(n - 1) + fibonacci_cached(n - 2)
​
​
# Test the execution time of each function
print(timeit.timeit(lambda: fibonacci(30), number=1))
# 0.09499712497927248
print(timeit.timeit(lambda: fibonacci_cached(30), number=1))
# 6.458023563027382e-06

可以看到 functools.cache 装饰器如何使我们的代码运行得更快。

缓存版本的速度明显更快,因为它缓存了先前计算的结果。因此,它只计算每个斐波那契数一次,并从缓存中检索具有相同参数的后续调用

while 1 VS while True

如果要创建无限 while 循环,我们可以使用 while True or while 1 .

它们的性能差异通常可以忽略不计。但有趣的是, while 1 稍微快一点。

这是因为是 1 字面量,但 True 是一个全局名称,需要在 Python 的全局作用域中查找。所以 1 的开销很小。

python 复制代码
import timeit
​
​
def loop_with_true():
    i = 0
    while True:
        if i >= 1000:
            break
        i += 1
​
​
def loop_with_one():
    i = 0
    while 1:
        if i >= 1000:
            break
        i += 1
​
​
print(timeit.timeit(loop_with_true, number=10000))
# 0.1733035419601947
print(timeit.timeit(loop_with_one, number=10000))
# 0.16412191605195403

正如我们所看到的,确实 while 1 稍微快一些。

然而,现代 Python 解释器(如 CPython )是高度优化的,这种差异通常是微不足道的。所以我们不需要担心这个可以忽略不计的差异。更不用说 while Truewhile 1 可读性更好。

按需导入 Python 模块

在 Python 脚本开头导入所有模块似乎是每个人都会这么做的操作,事实上我们没有必要导入全部的模块。如果模块太大,则根据需要导入它是一个更好的主意。

python 复制代码
def my_function():
    import heavy_module
    # rest of the function

如上面的代码所示,heavy_module 在函数中导入。这是一种"延迟加载"的思想:只有 my_function 被调用的时候该模块才会被导入。

这种方法的好处是,如果 my_function 在脚本执行期间从未调用过,则 heavy_module 永远不会加载,从而节省资源并减少脚本的启动时间。

相关推荐
CSXB9918 分钟前
三十四、Python基础语法(文件操作-上)
开发语言·python·功能测试·测试工具
亚图跨际1 小时前
MATLAB和Python及R潜变量模型和降维
python·matlab·r语言·生物学·潜变量模型
IT古董1 小时前
【机器学习】决定系数(R²:Coefficient of Determination)
人工智能·python·机器学习
德育处主任Pro1 小时前
『Django』APIView基于类的用法
后端·python·django
Star Patrick1 小时前
算法训练(leetcode)二刷第十九天 | *39. 组合总和、*40. 组合总和 II、*131. 分割回文串
python·算法·leetcode
武子康2 小时前
大数据-213 数据挖掘 机器学习理论 - KMeans Python 实现 距离计算函数 质心函数 聚类函数
大数据·人工智能·python·机器学习·数据挖掘·scikit-learn·kmeans
写点什么啦2 小时前
使用R语言survminer获取生存分析高风险和低风险的最佳截断值cut-off
开发语言·python·r语言·生存分析·x-tile
武子康2 小时前
大数据-214 数据挖掘 机器学习理论 - KMeans Python 实现 算法验证 sklearn n_clusters labels
大数据·人工智能·python·深度学习·算法·机器学习·数据挖掘
封步宇AIGC3 小时前
量化交易系统开发-实时行情自动化交易-Okex K线数据
人工智能·python·机器学习·数据挖掘
封步宇AIGC4 小时前
量化交易系统开发-实时行情自动化交易-Okex交易数据
人工智能·python·机器学习·数据挖掘