【深度学习程序实例】

以下是一个使用Python编写的深度学习程序实例,用于训练一个简单的神经网络来分类手写数字:

python 复制代码
import tensorflow as tf
from tensorflow.keras.datasets import mnist

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 数据预处理
x_train = x_train / 255.0
x_test = x_test / 255.0

# 构建神经网络模型
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))

# 评估模型
loss, accuracy = model.evaluate(x_test, y_test)
print('Test loss:', loss)
print('Test accuracy:', accuracy)

# 使用模型进行预测
predictions = model.predict(x_test[:5])
print('Predictions:', predictions)

这个程序使用TensorFlow深度学习框架,通过加载MNIST数据集进行手写数字分类任务。首先,将数据进行预处理,将像素值缩放到0到1之间。然后,构建一个简单的神经网络模型,包括一个输入层、一个隐藏层和一个输出层。接下来,编译模型,指定优化器、损失函数和评估指标。然后,使用训练数据训练模型,并在测试数据上评估模型的性能。最后,使用模型进行预测并输出结果。

以下是一个使用Python编写的深度学习程序实例,用于训练一个简单的神经网络来分类手写数字:

python 复制代码
import tensorflow as tf
from tensorflow.keras.datasets import mnist

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 数据预处理
x_train = x_train / 255.0
x_test = x_test / 255.0

# 构建神经网络模型
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))

# 评估模型
loss, accuracy = model.evaluate(x_test, y_test)
print('Test loss:', loss)
print('Test accuracy:', accuracy)

# 使用模型进行预测
predictions = model.predict(x_test[:5])
print('Predictions:', predictions)

这个程序使用TensorFlow深度学习框架,通过加载MNIST数据集进行手写数字分类任务。首先,将数据进行预处理,将像素值缩放到0到1之间。然后,构建一个简单的神经网络模型,包括一个输入层、一个隐藏层和一个输出层。接下来,编译模型,指定优化器、损失函数和评估指标。然后,使用训练数据训练模型,并在测试数据上评估模型的性能。最后,使用模型进行预测并输出结果。

相关推荐
WGS.2 小时前
llama factory 扩充词表训练
深度学习
Coovally AI模型快速验证5 小时前
当视觉语言模型接收到相互矛盾的信息时,它会相信哪个信号?
人工智能·深度学习·算法·机器学习·目标跟踪·语言模型
居7然5 小时前
Attention注意力机制:原理、实现与优化全解析
人工智能·深度学习·大模型·transformer·embedding
Python图像识别7 小时前
75_基于深度学习的咖啡叶片病害检测系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
PyAIGCMaster7 小时前
钉钉的设计理念方面,我可以学习
人工智能·深度学习·学习·钉钉
深蓝电商API8 小时前
告别混乱文本:基于深度学习的 PDF 与复杂版式文档信息抽取
人工智能·深度学习·pdf
tt5555555555558 小时前
Transformer原理与过程详解
网络·深度学习·transformer
qzhqbb8 小时前
神经网络—— 人工神经网络
人工智能·深度学习·神经网络
Victory_orsh9 小时前
“自然搞懂”深度学习(基于Pytorch架构)——010203
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习