【深度学习程序实例】

以下是一个使用Python编写的深度学习程序实例,用于训练一个简单的神经网络来分类手写数字:

python 复制代码
import tensorflow as tf
from tensorflow.keras.datasets import mnist

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 数据预处理
x_train = x_train / 255.0
x_test = x_test / 255.0

# 构建神经网络模型
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))

# 评估模型
loss, accuracy = model.evaluate(x_test, y_test)
print('Test loss:', loss)
print('Test accuracy:', accuracy)

# 使用模型进行预测
predictions = model.predict(x_test[:5])
print('Predictions:', predictions)

这个程序使用TensorFlow深度学习框架,通过加载MNIST数据集进行手写数字分类任务。首先,将数据进行预处理,将像素值缩放到0到1之间。然后,构建一个简单的神经网络模型,包括一个输入层、一个隐藏层和一个输出层。接下来,编译模型,指定优化器、损失函数和评估指标。然后,使用训练数据训练模型,并在测试数据上评估模型的性能。最后,使用模型进行预测并输出结果。

以下是一个使用Python编写的深度学习程序实例,用于训练一个简单的神经网络来分类手写数字:

python 复制代码
import tensorflow as tf
from tensorflow.keras.datasets import mnist

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 数据预处理
x_train = x_train / 255.0
x_test = x_test / 255.0

# 构建神经网络模型
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))

# 评估模型
loss, accuracy = model.evaluate(x_test, y_test)
print('Test loss:', loss)
print('Test accuracy:', accuracy)

# 使用模型进行预测
predictions = model.predict(x_test[:5])
print('Predictions:', predictions)

这个程序使用TensorFlow深度学习框架,通过加载MNIST数据集进行手写数字分类任务。首先,将数据进行预处理,将像素值缩放到0到1之间。然后,构建一个简单的神经网络模型,包括一个输入层、一个隐藏层和一个输出层。接下来,编译模型,指定优化器、损失函数和评估指标。然后,使用训练数据训练模型,并在测试数据上评估模型的性能。最后,使用模型进行预测并输出结果。

相关推荐
لا معنى له3 小时前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
Coding茶水间9 小时前
基于深度学习的非机动车头盔检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
baby_hua10 小时前
20251024_PyTorch深度学习快速入门教程
人工智能·pytorch·深度学习
another heaven12 小时前
【深度学习 YOLO官方模型全解析】
人工智能·深度学习·yolo
极度畅想14 小时前
脑电模型实战系列(三):DEAP 数据集处理与 Russell 环状模型实战(一)
深度学习·特征提取·情感计算·脑机接口 bci·deap数据集
CoovallyAIHub15 小时前
从“模仿”到“进化”!华科&小米开源MindDrive:在线强化学习重塑「语言-动作」闭环驾驶
深度学习·算法·计算机视觉
OpenBayes15 小时前
Open-AutoGLM 实现手机端自主操作;PhysDrive 数据集采集真实驾驶生理信号
人工智能·深度学习·机器学习·数据集·文档转换·图片生成·蛋白质设计
CoovallyAIHub16 小时前
SAM 真的开始「分割一切」,从图像到声音,Meta 开源 SAM Audio
深度学习·算法·计算机视觉
五月底_16 小时前
GRPO参数详解
人工智能·深度学习·nlp·rl·grpo