【深度学习程序实例】

以下是一个使用Python编写的深度学习程序实例,用于训练一个简单的神经网络来分类手写数字:

python 复制代码
import tensorflow as tf
from tensorflow.keras.datasets import mnist

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 数据预处理
x_train = x_train / 255.0
x_test = x_test / 255.0

# 构建神经网络模型
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))

# 评估模型
loss, accuracy = model.evaluate(x_test, y_test)
print('Test loss:', loss)
print('Test accuracy:', accuracy)

# 使用模型进行预测
predictions = model.predict(x_test[:5])
print('Predictions:', predictions)

这个程序使用TensorFlow深度学习框架,通过加载MNIST数据集进行手写数字分类任务。首先,将数据进行预处理,将像素值缩放到0到1之间。然后,构建一个简单的神经网络模型,包括一个输入层、一个隐藏层和一个输出层。接下来,编译模型,指定优化器、损失函数和评估指标。然后,使用训练数据训练模型,并在测试数据上评估模型的性能。最后,使用模型进行预测并输出结果。

以下是一个使用Python编写的深度学习程序实例,用于训练一个简单的神经网络来分类手写数字:

python 复制代码
import tensorflow as tf
from tensorflow.keras.datasets import mnist

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 数据预处理
x_train = x_train / 255.0
x_test = x_test / 255.0

# 构建神经网络模型
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))

# 评估模型
loss, accuracy = model.evaluate(x_test, y_test)
print('Test loss:', loss)
print('Test accuracy:', accuracy)

# 使用模型进行预测
predictions = model.predict(x_test[:5])
print('Predictions:', predictions)

这个程序使用TensorFlow深度学习框架,通过加载MNIST数据集进行手写数字分类任务。首先,将数据进行预处理,将像素值缩放到0到1之间。然后,构建一个简单的神经网络模型,包括一个输入层、一个隐藏层和一个输出层。接下来,编译模型,指定优化器、损失函数和评估指标。然后,使用训练数据训练模型,并在测试数据上评估模型的性能。最后,使用模型进行预测并输出结果。

相关推荐
牧歌悠悠3 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
Archie_IT4 小时前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理
大数据追光猿4 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
Watermelo6177 小时前
从DeepSeek大爆发看AI革命困局:大模型如何突破算力囚笼与信任危机?
人工智能·深度学习·神经网络·机器学习·ai·语言模型·自然语言处理
Donvink7 小时前
【DeepSeek-R1背后的技术】系列九:MLA(Multi-Head Latent Attention,多头潜在注意力)
人工智能·深度学习·语言模型·transformer
计算机软件程序设计7 小时前
深度学习在图像识别中的应用-以花卉分类系统为例
人工智能·深度学习·分类
終不似少年遊*11 小时前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
夏莉莉iy13 小时前
[MDM 2024]Spatial-Temporal Large Language Model for Traffic Prediction
人工智能·笔记·深度学习·机器学习·语言模型·自然语言处理·transformer
pchmi14 小时前
CNN常用卷积核
深度学习·神经网络·机器学习·cnn·c#
pzx_00114 小时前
【机器学习】K折交叉验证(K-Fold Cross-Validation)
人工智能·深度学习·算法·机器学习