自然语言转SQL,一个微调ChatGPT3.5的实例(下)--模型微调及模型性能

提交训练集进行微调

一旦我们创建了JSONL文件(可以在这里ipfs_here找到一个小样本),下一步是使用以下命令将创建的文件上传到OpenAI:

javascript 复制代码
openai.api_key = os.getenv("OPENAI_API_KEY")
print(openai.File.create(file=open("spider-finetuning.jsonl", "rb"),purpose='fine-tune'))

上传文件后,可以使用以下命令检查上传的状态:

javascript 复制代码
print(openai.File.retrieve(id="file-id"))
# 或者
print(openai.File.list())

结果应该类似于:

javascript 复制代码
{
"object": "file",
"id": "file-id",
"purpose": "fine-tune",
"filename": "file",
"bytes": 71699079,
"created_at": 1693343752,
"status": "uploaded",
"status_details": null
}

当状态变为已处理时(类似于下面的示例),您可以将文件用于微调:

javascript 复制代码
{
"object": "file",
"id": "file-id",
"purpose": "fine-tune",
"filename": "file",
"bytes": 71699079,
"created_at": 1693343752,
"status": "processed",
"status_details": null
}

现在,我们准备开始微调作业。可以使用以下python代码创建一个微调作业:

javascript 复制代码
print(openai.FineTuningJob.create(
training_file="file-id",
model="gpt-3.5-turbo",
suffix = "spider",
hyperparameters = {
"n_epochs": #number_of_epochs,
})
)

微调过程的持续时间将根据微调数据集的大小而有所不同。微调有一个最大令牌限制,设置为50000000个令牌。因此,在使用Spider数据集时,我们将样本数量从7000个减少到5750个,并进行总共2个时期的微调。

您可以使用以下命令检查微调作业的状态:

javascript 复制代码
print(openai.FineTuningJob.retrieve(id="ftjob-id"))

结果应类似于:

javascript 复制代码
{
"object": "fine_tuning.job",
"id": "ftjob-id",
"model": "gpt-3.5-turbo-0613",
"created_at": 1693346245,
"finished_at": 1693353313,
"fine_tuned_model": "ft:gpt-3.5-turbo-0613:dataherald:spider:id",
"organization_id": "org-id",
"result_files": [
"file-id"
],
"status": "succeeded",
"validation_file": null,
"training_file": "file-id",
"hyperparameters": {
"n_epochs": 2
},
"trained_tokens": 44722020
}

模型性能

DIN-SQL是一种用于自然语言到SQL转换的模型,它在处理Spider数据集上取得了最新的研究成果。DIN-SQL代表"Denoising-inductive SQL generation",该模型结合了去噪自编码器和归纳式学习的方法,使用GPT-4作为生成器模型来生成SQL查询语句。DIN-SQL使用了各种高级提示技术,包括少量示例提示、思路链提示和分解提示,以提高其性能和准确度。该模型具有较高的准确性和效率,但在成本和处理时间方面可能较高。

我们将微调模型的性能与未经微调的GPT3.5-Turbo和DIN-SQL + GPT-4(Spider的当前最先进方法)进行了基准测试,以获得零-shot性能。

微调的G-3.5-Turbo的性能与之前的方法相比进的提示技术,包括少量提示、思维链提示和分解提示)保持一致,这是当前最先进的方法。

关键是,与DIN-SQL + GPT-4方法相比,微调模型显著降低了成本和处理时间。下表提供了每个来自Spider基准的问题的不同模型之间的大致成本和速度。

同模型每个问题的成本和速度(来自Spider基准)

如上所示,与DIN-SQL与GPT-4相比,微调的GPT-3.5-Turbo模型的成本降低了30倍 ,速度提高了12倍

结论

通过投入时间和金钱来构建训练数据集,可以在准确性上与最先进的方法相匹配,同时速度提高12倍,成本降低30倍。如果,针对具体的业务做针对性的微调准确性应该可以进一步提高。

相关推荐
艾派森9 分钟前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing112311 分钟前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子16 分钟前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing28 分钟前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗1 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
1 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_1 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习
攻城狮_Dream1 小时前
“探索未来医疗:生成式人工智能在医疗领域的革命性应用“
人工智能·设计·医疗·毕业
学习前端的小z2 小时前
【AIGC】如何通过ChatGPT轻松制作个性化GPTs应用
人工智能·chatgpt·aigc
埃菲尔铁塔_CV算法2 小时前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法