迁移学习|代码实现

还记得我们之前实现的猫狗分类器 吗?在哪里,我们设计了一个网络,这个网络接受一张图片,最后输出这张图片属于猫还是狗。实现分类器的过程比较复杂,准备的数据也比较少。所以我们是否可以使用一种方法,在数据很少的情况下仍然可以训练出较好的模型。

借助已经训练好的模型是个不错的想法。因此我们将学习如何使用预训练好的模型来构建只需要很少数据的先进的猫狗图像分类器。

首先,加载一个预训练的模型,例如ResNet18。

借助torchvision库,我们很容易获得一组已经训练好的模型。这些模型大多数接受一个称为pretrained的参数,当这个参数为True时,它会下载为ImageNet分类问题调整好的权重。就像这样:

复制代码
from torchvision import modelsnetwork1=models.resnet18(pretrained=True)

当代码第一次运行时,需要一点时间...

接着,我们需要冻结所有层,所有权重不会随训练而更新。​​​​​​​

复制代码
for param in network1.parameters():    param.requires_grad=False

当然,这个模型并不是针对2分类问题,所以,我们需要将其最后一层的输出特征从1000改为2

首先我们要知道最后一层的名字:​​​​​​​

复制代码
network1ResNet(  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)...  ...  ...  (fc): Linear(in_features=512, out_features=1000, bias=True)

最后一层是个全连接层,名为fc。

所以,我们就可将最后一层替换为输出特征为2的全连接层

复制代码
network1.fc=nn.Linear(512,2)

注:此时,因为该层为新的层,所以其requires_grad=True,这样整个网络仅有这一层可以更新权重

打印网络​​​​​​​

复制代码
network1ResNet(  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)  (relu): ReLU(inplace=True)  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)...  ...  ...  (fc): Linear(in_features=512, out_features=2, bias=True)

此时,network1就是一个符合猫狗分类问题的模型

最后,既然我们只对最后一层训练,那么我们只需要将最后一层的参数传入优化器

复制代码
optimizer=optim.SGD(network1.fc.parameters(),lr=...,momentnum=...)

总结一下代码:​​​​​​​

复制代码
from torchvision import modelsimport torch.nn as nnimport torch.optim as optim#网络搭建network1=models.resnet18(pretrained=True)
for param in network1.parameters():    param.requires_grad=False
network1.fc=nn.Linear(512,2)#损失函数criterion=nn.CrossEntropyLoss()#优化器optimizer=optim.SGD(network1.fc.parameters(),lr=...,momentnum=...)

其实,我们就是利用已经训练好的模型的主要目的就是它已经能够提取出非常好的特征 ,最后一层接受前面层提取的特征,然后误差反向传播,仅更新这一层的权重,不断迭代,最后达到一个非常好的效果。

我们这里只对最后一层进行了调整 ,只训练这一层,主要原因就是数据太少 ;如果数据较多 ,可以把预训练的前面一些层权重固定住,后面层不固定,修改最后一层以满足任务,然后训练;如果数据很多,算力充沛,那么可以对所有层进行精调,只把预训练的模型的参数作为初始化参数。

相关推荐
飞哥数智坊13 分钟前
TRAE 国内版 SOLO 全放开
人工智能·ai编程·trae
落叶,听雪23 分钟前
AI建站推荐
大数据·人工智能·python
AI猫站长31 分钟前
快讯|特斯拉机器人街头“打工”卖爆米花;灵心巧手香港AI艺术节秀“艺能”,香港艺发局主席霍启刚积极评价;国产核心部件价格将“腰斩”
人工智能·机器人·具身智能·neurips·灵心巧手·脑电波·linkerhand
Godspeed Zhao1 小时前
自动驾驶中的传感器技术77——Sensor Fusion(0)
人工智能·机器学习·自动驾驶
哥布林学者1 小时前
吴恩达深度学习课程四:计算机视觉 第三周:检测算法 (三)交并比、非极大值抑制和锚框
深度学习·ai
昨日之日20061 小时前
SCAIL - 自然流畅的AI角色动画生成软件 照片跳舞 虚拟偶像 WebUI+ComfyUI工作流 一键整合包下载
人工智能·音视频
geneculture1 小时前
从智力仿真到认知协同:人机之间的价值对齐与共生框架
大数据·人工智能·学习·融智学的重要应用·信智序位
我很哇塞耶1 小时前
OpenAI最新发布,企业级AI智能体的强化微调实践
人工智能·ai·大模型
岁月的眸1 小时前
【科大讯飞声纹识别和语音内容识别的实时接口实现】
人工智能·go·语音识别