迁移学习|代码实现

还记得我们之前实现的猫狗分类器 吗?在哪里,我们设计了一个网络,这个网络接受一张图片,最后输出这张图片属于猫还是狗。实现分类器的过程比较复杂,准备的数据也比较少。所以我们是否可以使用一种方法,在数据很少的情况下仍然可以训练出较好的模型。

借助已经训练好的模型是个不错的想法。因此我们将学习如何使用预训练好的模型来构建只需要很少数据的先进的猫狗图像分类器。

首先,加载一个预训练的模型,例如ResNet18。

借助torchvision库,我们很容易获得一组已经训练好的模型。这些模型大多数接受一个称为pretrained的参数,当这个参数为True时,它会下载为ImageNet分类问题调整好的权重。就像这样:

复制代码
from torchvision import modelsnetwork1=models.resnet18(pretrained=True)

当代码第一次运行时,需要一点时间...

接着,我们需要冻结所有层,所有权重不会随训练而更新。​​​​​​​

复制代码
for param in network1.parameters():    param.requires_grad=False

当然,这个模型并不是针对2分类问题,所以,我们需要将其最后一层的输出特征从1000改为2

首先我们要知道最后一层的名字:​​​​​​​

复制代码
network1ResNet(  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)...  ...  ...  (fc): Linear(in_features=512, out_features=1000, bias=True)

最后一层是个全连接层,名为fc。

所以,我们就可将最后一层替换为输出特征为2的全连接层

复制代码
network1.fc=nn.Linear(512,2)

注:此时,因为该层为新的层,所以其requires_grad=True,这样整个网络仅有这一层可以更新权重

打印网络​​​​​​​

复制代码
network1ResNet(  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)  (relu): ReLU(inplace=True)  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)...  ...  ...  (fc): Linear(in_features=512, out_features=2, bias=True)

此时,network1就是一个符合猫狗分类问题的模型

最后,既然我们只对最后一层训练,那么我们只需要将最后一层的参数传入优化器

复制代码
optimizer=optim.SGD(network1.fc.parameters(),lr=...,momentnum=...)

总结一下代码:​​​​​​​

复制代码
from torchvision import modelsimport torch.nn as nnimport torch.optim as optim#网络搭建network1=models.resnet18(pretrained=True)
for param in network1.parameters():    param.requires_grad=False
network1.fc=nn.Linear(512,2)#损失函数criterion=nn.CrossEntropyLoss()#优化器optimizer=optim.SGD(network1.fc.parameters(),lr=...,momentnum=...)

其实,我们就是利用已经训练好的模型的主要目的就是它已经能够提取出非常好的特征 ,最后一层接受前面层提取的特征,然后误差反向传播,仅更新这一层的权重,不断迭代,最后达到一个非常好的效果。

我们这里只对最后一层进行了调整 ,只训练这一层,主要原因就是数据太少 ;如果数据较多 ,可以把预训练的前面一些层权重固定住,后面层不固定,修改最后一层以满足任务,然后训练;如果数据很多,算力充沛,那么可以对所有层进行精调,只把预训练的模型的参数作为初始化参数。

相关推荐
新知图书14 小时前
FastGPT版本体系概览
人工智能·ai agent·智能体·大模型应用开发·大模型应用
老蒋新思维15 小时前
创客匠人 2025 全球创始人 IP+AI 万人高峰论坛:AI 赋能下知识变现与 IP 变现的实践沉淀与行业启示
大数据·人工智能·网络协议·tcp/ip·重构·创始人ip·创客匠人
黑客思维者15 小时前
LLM底层原理学习笔记:Adam优化器为何能征服巨型模型成为深度学习的“速度与稳定之王”
笔记·深度学习·学习·llm·adam优化器
Keep_Trying_Go15 小时前
基于Zero-Shot的目标计数算法详解(Open-world Text-specified Object Counting)
人工智能·pytorch·python·算法·多模态·目标统计
AKAMAI15 小时前
Akamai 宣布收购功能即服务公司 Fermyon
人工智能·云计算
河南博为智能科技有限公司15 小时前
高集成度国产八串口联网服务器:工业级多设备联网解决方案
大数据·运维·服务器·数据库·人工智能·物联网
光路科技16 小时前
人工智能时代,工业以太网正在“进化”成什么样?
人工智能
翔云 OCR API16 小时前
承兑汇票识别接口技术解析-开发者接口
开发语言·前端·数据库·人工智能·ocr
roman_日积跬步-终至千里16 小时前
【模式识别与机器学习(16)】聚类分析【1】:基础概念与常见方法
人工智能·机器学习