4.MapReduce 序列化

目录

概述

序列化是分布式计算中很重要的一环境,好的序列化方式,可以大大减少分布式计算中,网络传输的数据量。

序列化

序列化

对象 --> 字节序例 :存储到磁盘或者网络传输

MR 、Spark、Flink :分布式的执行框架 必然会涉及到网络传输

java 中的序列化:Serializable

Hadoop 中序列化特点: 紧凑、速度、扩展性、互操作

Spark 中使用了其它的序例化框架 Kyro

反序例化

字节序例 ---> 对象

java自带的两种

Serializable

此处是 java 自带的 序例化 方式,这种方式简单方便,但体积大,不利于大数据量网络传输。

java 复制代码
public class JavaSerDemo {

    public static void main(String[] args) throws IOException, ClassNotFoundException {
        Person person = new Person(1, "张三", 33);
        ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("download/person.obj"));
        out.writeObject(person);

        ObjectInputStream in = new ObjectInputStream(new FileInputStream("download/person.obj"));
        Object o = in.readObject();
        System.out.println(o);
    }


    static class Person implements Serializable {
        private int id;
        private String name;
        private int age;

        public Person(int id, String name, int age) {
            this.id = id;
            this.name = name;
            this.age = age;
        }

        @Override
        public String toString() {
            return "Person{" +
                    "id=" + id +
                    ", name='" + name + '\'' +
                    ", age=" + age +
                    '}';
        }

        public int getId() {
            return id;
        }

        public void setId(int id) {
            this.id = id;
        }

        public String getName() {
            return name;
        }

        public void setName(String name) {
            this.name = name;
        }

        public int getAge() {
            return age;
        }

        public void setAge(int age) {
            this.age = age;
        }
    }
}

非Serializable

java 复制代码
public class DataSerDemo {

    public static void main(String[] args) throws IOException {

        Person person = new Person(1, "张三", 33);
        DataOutputStream out = new DataOutputStream(new FileOutputStream("download/person2.obj"));
        out.writeInt(person.getId());
        out.writeUTF(person.getName());
        out.close();

        DataInputStream in = new DataInputStream(new FileInputStream("download/person2.obj"));
        // 这里要注意,上面以什么顺序写出去,这里就要以什么顺序读取
        int id = in.readInt();
        String name = in.readUTF();
        in.close();
        System.out.println("id:" + id + " name:" + name);

    }

    /**
     *  注意: 不需要继承 Serializable
     */
    static class Person {
        private int id;
        private String name;
        private int age;

        public Person(int id, String name, int age) {
            this.id = id;
            this.name = name;
            this.age = age;
        }

        @Override
        public String toString() {
            return "Person{" +
                    "id=" + id +
                    ", name='" + name + '\'' +
                    ", age=" + age +
                    '}';
        }

        public int getId() {
            return id;
        }

        public void setId(int id) {
            this.id = id;
        }

        public String getName() {
            return name;
        }

        public void setName(String name) {
            this.name = name;
        }

        public int getAge() {
            return age;
        }

        public void setAge(int age) {
            this.age = age;
        }
    }
}

hadoop序例化

官方地址速递

The key and value classes have to be serializable by the framework and hence need to implement the Writable interface. Additionally, the key classes have to implement the WritableComparable interface to facilitate sorting by the framework.

注意:Writable 两个方法,一个 write ,readFields

java 复制代码
@InterfaceAudience.Public
@InterfaceStability.Stable
public interface Writable {

  void write(DataOutput out) throws IOException;

  void readFields(DataInput in) throws IOException;
}

实践

java 复制代码
public class PersonWritable implements Writable {

    private int id;
    private String name;
    private int age;
    // 消费金额
    private int consumption;
    // 消费总金额
    private long consumptions;


    public PersonWritable() {
    }

    public PersonWritable(int id, String name, int age, int consumption) {
        this.id = id;
        this.name = name;
        this.age = age;
        this.consumption = consumption;
    }

    public PersonWritable(int id, String name, int age, int consumption, long consumptions) {
        this.id = id;
        this.name = name;
        this.age = age;
        this.consumption = consumption;
        this.consumptions = consumptions;
    }

    public int getId() {
        return id;
    }

    public void setId(int id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }

    public int getConsumption() {
        return consumption;
    }

    public void setConsumption(int consumption) {
        this.consumption = consumption;
    }

    public long getConsumptions() {
        return consumptions;
    }

    public void setConsumptions(long consumptions) {
        this.consumptions = consumptions;
    }

    @Override
    public String toString() {
        return
                "id=" + id +
                        ", name='" + name + '\'' +
                        ", age='" + age + '\'' +
                        ", consumption=" + consumption + '\'' +
                        ", consumptions=" + consumptions;
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeInt(id);
        out.writeUTF(name);
        out.writeInt(age);
        out.writeInt(consumption);
        out.writeLong(consumptions);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        id = in.readInt();
        name = in.readUTF();
        age = in.readInt();
        consumption = in.readInt();
        consumptions = in.readLong();
    }
}
java 复制代码
/**
 * 统计 个人 消费
 */
public class PersonStatistics {

    static class PersonStatisticsMapper extends Mapper<LongWritable, Text, IntWritable, PersonWritable> {
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String[] split = value.toString().split(",");
            int id = Integer.parseInt(split[0]);
            String name = split[1];
            int age = Integer.parseInt(split[2]);
            int consumption = Integer.parseInt(split[3]);
            PersonWritable writable = new PersonWritable(id, name, age, consumption, 0);
            context.write(new IntWritable(id), writable);
        }
    }

    static class PersonStatisticsReducer extends Reducer<IntWritable, PersonWritable, NullWritable, PersonWritable> {
        @Override
        protected void reduce(IntWritable key, Iterable<PersonWritable> values, Context context) throws IOException, InterruptedException {
            long count = 0L;
            PersonWritable person = null;
            for (PersonWritable data : values) {
                if (Objects.isNull(person)) {
                    person = data;
                }
                count = count + data.getConsumption();
            }
            person.setConsumptions(count);

            PersonWritable personWritable = new PersonWritable(person.getId(), person.getName(), person.getAge(), person.getConsumption(), count);

            context.write(NullWritable.get(), personWritable);
        }
    }

    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration configuration = new Configuration();

        String sourcePath = "data/person.data";
        String distPath = "downloadOut/person-out.data";

        FileUtil.deleteIfExist(configuration, distPath);

        Job job = Job.getInstance(configuration, "person statistics");
        job.setJarByClass(PersonStatistics.class);
        //job.setCombinerClass(PersonStatistics.PersonStatisticsReducer.class);
        job.setMapperClass(PersonStatisticsMapper.class);
        job.setReducerClass(PersonStatisticsReducer.class);
        job.setMapOutputKeyClass(IntWritable.class);
        job.setMapOutputValueClass(PersonWritable.class);
        job.setOutputKeyClass(NullWritable.class);
        job.setOutputValueClass(PersonWritable.class);

        FileInputFormat.addInputPath(job, new Path(sourcePath));
        FileOutputFormat.setOutputPath(job, new Path(distPath));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}
bash 复制代码
# person.data
1,张三,30,10
1,张三,30,20
2,李四,25,5

上述执行结果如下:

分片/InputFormat & InputSplit

官方文档速递

java 复制代码
org.apache.hadoop.mapreduce.InputFormat
org.apache.hadoop.mapreduce.InputSplit

日志

执行 序列化 测试小程序,关注以下日志

bash 复制代码
# 总共加载一个文件,分隔成一个
2024-01-06 09:19:42,363 [main] [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] [INFO] - Total input files to process : 1
2024-01-06 09:19:42,487 [main] [org.apache.hadoop.mapreduce.JobSubmitter] [INFO] - number of splits:1

结束

至此,MapReduce 序列化 至此结束,如有疑问,欢迎评论区留言。

相关推荐
神秘打工猴36 分钟前
数据仓库为什么要分层
大数据·数据仓库·spark
Hard_pea39 分钟前
Spark 深入解析
大数据·分布式·spark
闯闯桑1 小时前
Scala 中的访问修饰符
大数据·开发语言·scala
后端小肥肠1 小时前
解锁DeepSpeek-R1大模型微调:从训练到部署,打造定制化AI会话系统
大数据·人工智能
24k小善10 小时前
flink集成tidb cdc
大数据·flink·tidb
kngines12 小时前
【实战ES】实战 Elasticsearch:快速上手与深度实践-3.2.3 案例:新闻搜索引擎的相关性优化
大数据·elasticsearch·搜索引擎
秦南北13 小时前
国内领先的宠物类电商代运营公司品融电商
大数据·人工智能·电商
problc14 小时前
Manus AI 全球首款通用型 Agent,中国制造
大数据·人工智能·制造
*星星之火*17 小时前
【Flink银行反欺诈系统设计方案】3.欺诈的7种场景和架构方案、核心表设计
大数据·架构·flink
黑客KKKing18 小时前
Refreshtoken 前端 安全 前端安全方面
大数据·前端·网络·安全·web安全