4.MapReduce 序列化

目录

概述

序列化是分布式计算中很重要的一环境,好的序列化方式,可以大大减少分布式计算中,网络传输的数据量。

序列化

序列化

对象 --> 字节序例 :存储到磁盘或者网络传输

MR 、Spark、Flink :分布式的执行框架 必然会涉及到网络传输

java 中的序列化:Serializable

Hadoop 中序列化特点: 紧凑、速度、扩展性、互操作

Spark 中使用了其它的序例化框架 Kyro

反序例化

字节序例 ---> 对象

java自带的两种

Serializable

此处是 java 自带的 序例化 方式,这种方式简单方便,但体积大,不利于大数据量网络传输。

java 复制代码
public class JavaSerDemo {

    public static void main(String[] args) throws IOException, ClassNotFoundException {
        Person person = new Person(1, "张三", 33);
        ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("download/person.obj"));
        out.writeObject(person);

        ObjectInputStream in = new ObjectInputStream(new FileInputStream("download/person.obj"));
        Object o = in.readObject();
        System.out.println(o);
    }


    static class Person implements Serializable {
        private int id;
        private String name;
        private int age;

        public Person(int id, String name, int age) {
            this.id = id;
            this.name = name;
            this.age = age;
        }

        @Override
        public String toString() {
            return "Person{" +
                    "id=" + id +
                    ", name='" + name + '\'' +
                    ", age=" + age +
                    '}';
        }

        public int getId() {
            return id;
        }

        public void setId(int id) {
            this.id = id;
        }

        public String getName() {
            return name;
        }

        public void setName(String name) {
            this.name = name;
        }

        public int getAge() {
            return age;
        }

        public void setAge(int age) {
            this.age = age;
        }
    }
}

非Serializable

java 复制代码
public class DataSerDemo {

    public static void main(String[] args) throws IOException {

        Person person = new Person(1, "张三", 33);
        DataOutputStream out = new DataOutputStream(new FileOutputStream("download/person2.obj"));
        out.writeInt(person.getId());
        out.writeUTF(person.getName());
        out.close();

        DataInputStream in = new DataInputStream(new FileInputStream("download/person2.obj"));
        // 这里要注意,上面以什么顺序写出去,这里就要以什么顺序读取
        int id = in.readInt();
        String name = in.readUTF();
        in.close();
        System.out.println("id:" + id + " name:" + name);

    }

    /**
     *  注意: 不需要继承 Serializable
     */
    static class Person {
        private int id;
        private String name;
        private int age;

        public Person(int id, String name, int age) {
            this.id = id;
            this.name = name;
            this.age = age;
        }

        @Override
        public String toString() {
            return "Person{" +
                    "id=" + id +
                    ", name='" + name + '\'' +
                    ", age=" + age +
                    '}';
        }

        public int getId() {
            return id;
        }

        public void setId(int id) {
            this.id = id;
        }

        public String getName() {
            return name;
        }

        public void setName(String name) {
            this.name = name;
        }

        public int getAge() {
            return age;
        }

        public void setAge(int age) {
            this.age = age;
        }
    }
}

hadoop序例化

官方地址速递

The key and value classes have to be serializable by the framework and hence need to implement the Writable interface. Additionally, the key classes have to implement the WritableComparable interface to facilitate sorting by the framework.

注意:Writable 两个方法,一个 write ,readFields

java 复制代码
@InterfaceAudience.Public
@InterfaceStability.Stable
public interface Writable {

  void write(DataOutput out) throws IOException;

  void readFields(DataInput in) throws IOException;
}

实践

java 复制代码
public class PersonWritable implements Writable {

    private int id;
    private String name;
    private int age;
    // 消费金额
    private int consumption;
    // 消费总金额
    private long consumptions;


    public PersonWritable() {
    }

    public PersonWritable(int id, String name, int age, int consumption) {
        this.id = id;
        this.name = name;
        this.age = age;
        this.consumption = consumption;
    }

    public PersonWritable(int id, String name, int age, int consumption, long consumptions) {
        this.id = id;
        this.name = name;
        this.age = age;
        this.consumption = consumption;
        this.consumptions = consumptions;
    }

    public int getId() {
        return id;
    }

    public void setId(int id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }

    public int getConsumption() {
        return consumption;
    }

    public void setConsumption(int consumption) {
        this.consumption = consumption;
    }

    public long getConsumptions() {
        return consumptions;
    }

    public void setConsumptions(long consumptions) {
        this.consumptions = consumptions;
    }

    @Override
    public String toString() {
        return
                "id=" + id +
                        ", name='" + name + '\'' +
                        ", age='" + age + '\'' +
                        ", consumption=" + consumption + '\'' +
                        ", consumptions=" + consumptions;
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeInt(id);
        out.writeUTF(name);
        out.writeInt(age);
        out.writeInt(consumption);
        out.writeLong(consumptions);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        id = in.readInt();
        name = in.readUTF();
        age = in.readInt();
        consumption = in.readInt();
        consumptions = in.readLong();
    }
}
java 复制代码
/**
 * 统计 个人 消费
 */
public class PersonStatistics {

    static class PersonStatisticsMapper extends Mapper<LongWritable, Text, IntWritable, PersonWritable> {
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String[] split = value.toString().split(",");
            int id = Integer.parseInt(split[0]);
            String name = split[1];
            int age = Integer.parseInt(split[2]);
            int consumption = Integer.parseInt(split[3]);
            PersonWritable writable = new PersonWritable(id, name, age, consumption, 0);
            context.write(new IntWritable(id), writable);
        }
    }

    static class PersonStatisticsReducer extends Reducer<IntWritable, PersonWritable, NullWritable, PersonWritable> {
        @Override
        protected void reduce(IntWritable key, Iterable<PersonWritable> values, Context context) throws IOException, InterruptedException {
            long count = 0L;
            PersonWritable person = null;
            for (PersonWritable data : values) {
                if (Objects.isNull(person)) {
                    person = data;
                }
                count = count + data.getConsumption();
            }
            person.setConsumptions(count);

            PersonWritable personWritable = new PersonWritable(person.getId(), person.getName(), person.getAge(), person.getConsumption(), count);

            context.write(NullWritable.get(), personWritable);
        }
    }

    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration configuration = new Configuration();

        String sourcePath = "data/person.data";
        String distPath = "downloadOut/person-out.data";

        FileUtil.deleteIfExist(configuration, distPath);

        Job job = Job.getInstance(configuration, "person statistics");
        job.setJarByClass(PersonStatistics.class);
        //job.setCombinerClass(PersonStatistics.PersonStatisticsReducer.class);
        job.setMapperClass(PersonStatisticsMapper.class);
        job.setReducerClass(PersonStatisticsReducer.class);
        job.setMapOutputKeyClass(IntWritable.class);
        job.setMapOutputValueClass(PersonWritable.class);
        job.setOutputKeyClass(NullWritable.class);
        job.setOutputValueClass(PersonWritable.class);

        FileInputFormat.addInputPath(job, new Path(sourcePath));
        FileOutputFormat.setOutputPath(job, new Path(distPath));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}
bash 复制代码
# person.data
1,张三,30,10
1,张三,30,20
2,李四,25,5

上述执行结果如下:

分片/InputFormat & InputSplit

官方文档速递

java 复制代码
org.apache.hadoop.mapreduce.InputFormat
org.apache.hadoop.mapreduce.InputSplit

日志

执行 序列化 测试小程序,关注以下日志

bash 复制代码
# 总共加载一个文件,分隔成一个
2024-01-06 09:19:42,363 [main] [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] [INFO] - Total input files to process : 1
2024-01-06 09:19:42,487 [main] [org.apache.hadoop.mapreduce.JobSubmitter] [INFO] - number of splits:1

结束

至此,MapReduce 序列化 至此结束,如有疑问,欢迎评论区留言。

相关推荐
ggabb17 小时前
新国标电动车爬坡困境:当限速25km/h遭遇安全危机,无责伤亡谁来买单?
大数据·人工智能·安全
羑悻的小杀马特17 小时前
破局IoT与大数据协同难题!Apache IoTDB用硬核性能打底、强生态护航,成行业新宠!
大数据·物联网·ai·apache·iotdb
程途拾光15817 小时前
企业组织架构图导出Word 在线编辑免费工具
大数据·论文阅读·人工智能·信息可视化·架构·word·流程图
Giser探索家17 小时前
卫星遥感数据核心参数解析:空间分辨率与时间分辨率
大数据·图像处理·人工智能·深度学习·算法·计算机视觉
微盛企微增长小知识17 小时前
2025企业微信智能表格使用全指南:AI驱动的数据管理实战
大数据·人工智能·企业微信
跨境卫士-小汪17 小时前
告别低效详情:A+页面重构亚马逊转化逻辑
大数据·重构·产品运营·跨境电商·防关联
shjita17 小时前
hadoop运行jar包的相关配置参考!
大数据·hadoop·分布式
yumgpkpm17 小时前
AI大模型手机的“简单替换陷阱”与Hadoop、Cloudera CDP 7大数据底座的关系探析
大数据·人工智能·hadoop·华为·spark·kafka·cloudera
yumgpkpm17 小时前
Cloudera CDP 7.3下载地址、方式,开源适配 CMP 7.3(或类 CDP 的 CMP 7.13 平台,如华为鲲鹏 ARM 版)值得推荐
大数据·hive·hadoop·分布式·华为·开源·cloudera
Light601 天前
点燃变革:领码SPARK融合平台如何重塑OA,开启企业智慧协同新纪元?
大数据·分布式·spark