4.MapReduce 序列化

目录

概述

序列化是分布式计算中很重要的一环境,好的序列化方式,可以大大减少分布式计算中,网络传输的数据量。

序列化

序列化

对象 --> 字节序例 :存储到磁盘或者网络传输

MR 、Spark、Flink :分布式的执行框架 必然会涉及到网络传输

java 中的序列化:Serializable

Hadoop 中序列化特点: 紧凑、速度、扩展性、互操作

Spark 中使用了其它的序例化框架 Kyro

反序例化

字节序例 ---> 对象

java自带的两种

Serializable

此处是 java 自带的 序例化 方式,这种方式简单方便,但体积大,不利于大数据量网络传输。

java 复制代码
public class JavaSerDemo {

    public static void main(String[] args) throws IOException, ClassNotFoundException {
        Person person = new Person(1, "张三", 33);
        ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("download/person.obj"));
        out.writeObject(person);

        ObjectInputStream in = new ObjectInputStream(new FileInputStream("download/person.obj"));
        Object o = in.readObject();
        System.out.println(o);
    }


    static class Person implements Serializable {
        private int id;
        private String name;
        private int age;

        public Person(int id, String name, int age) {
            this.id = id;
            this.name = name;
            this.age = age;
        }

        @Override
        public String toString() {
            return "Person{" +
                    "id=" + id +
                    ", name='" + name + '\'' +
                    ", age=" + age +
                    '}';
        }

        public int getId() {
            return id;
        }

        public void setId(int id) {
            this.id = id;
        }

        public String getName() {
            return name;
        }

        public void setName(String name) {
            this.name = name;
        }

        public int getAge() {
            return age;
        }

        public void setAge(int age) {
            this.age = age;
        }
    }
}

非Serializable

java 复制代码
public class DataSerDemo {

    public static void main(String[] args) throws IOException {

        Person person = new Person(1, "张三", 33);
        DataOutputStream out = new DataOutputStream(new FileOutputStream("download/person2.obj"));
        out.writeInt(person.getId());
        out.writeUTF(person.getName());
        out.close();

        DataInputStream in = new DataInputStream(new FileInputStream("download/person2.obj"));
        // 这里要注意,上面以什么顺序写出去,这里就要以什么顺序读取
        int id = in.readInt();
        String name = in.readUTF();
        in.close();
        System.out.println("id:" + id + " name:" + name);

    }

    /**
     *  注意: 不需要继承 Serializable
     */
    static class Person {
        private int id;
        private String name;
        private int age;

        public Person(int id, String name, int age) {
            this.id = id;
            this.name = name;
            this.age = age;
        }

        @Override
        public String toString() {
            return "Person{" +
                    "id=" + id +
                    ", name='" + name + '\'' +
                    ", age=" + age +
                    '}';
        }

        public int getId() {
            return id;
        }

        public void setId(int id) {
            this.id = id;
        }

        public String getName() {
            return name;
        }

        public void setName(String name) {
            this.name = name;
        }

        public int getAge() {
            return age;
        }

        public void setAge(int age) {
            this.age = age;
        }
    }
}

hadoop序例化

官方地址速递

The key and value classes have to be serializable by the framework and hence need to implement the Writable interface. Additionally, the key classes have to implement the WritableComparable interface to facilitate sorting by the framework.

注意:Writable 两个方法,一个 write ,readFields

java 复制代码
@InterfaceAudience.Public
@InterfaceStability.Stable
public interface Writable {

  void write(DataOutput out) throws IOException;

  void readFields(DataInput in) throws IOException;
}

实践

java 复制代码
public class PersonWritable implements Writable {

    private int id;
    private String name;
    private int age;
    // 消费金额
    private int consumption;
    // 消费总金额
    private long consumptions;


    public PersonWritable() {
    }

    public PersonWritable(int id, String name, int age, int consumption) {
        this.id = id;
        this.name = name;
        this.age = age;
        this.consumption = consumption;
    }

    public PersonWritable(int id, String name, int age, int consumption, long consumptions) {
        this.id = id;
        this.name = name;
        this.age = age;
        this.consumption = consumption;
        this.consumptions = consumptions;
    }

    public int getId() {
        return id;
    }

    public void setId(int id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }

    public int getConsumption() {
        return consumption;
    }

    public void setConsumption(int consumption) {
        this.consumption = consumption;
    }

    public long getConsumptions() {
        return consumptions;
    }

    public void setConsumptions(long consumptions) {
        this.consumptions = consumptions;
    }

    @Override
    public String toString() {
        return
                "id=" + id +
                        ", name='" + name + '\'' +
                        ", age='" + age + '\'' +
                        ", consumption=" + consumption + '\'' +
                        ", consumptions=" + consumptions;
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeInt(id);
        out.writeUTF(name);
        out.writeInt(age);
        out.writeInt(consumption);
        out.writeLong(consumptions);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        id = in.readInt();
        name = in.readUTF();
        age = in.readInt();
        consumption = in.readInt();
        consumptions = in.readLong();
    }
}
java 复制代码
/**
 * 统计 个人 消费
 */
public class PersonStatistics {

    static class PersonStatisticsMapper extends Mapper<LongWritable, Text, IntWritable, PersonWritable> {
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String[] split = value.toString().split(",");
            int id = Integer.parseInt(split[0]);
            String name = split[1];
            int age = Integer.parseInt(split[2]);
            int consumption = Integer.parseInt(split[3]);
            PersonWritable writable = new PersonWritable(id, name, age, consumption, 0);
            context.write(new IntWritable(id), writable);
        }
    }

    static class PersonStatisticsReducer extends Reducer<IntWritable, PersonWritable, NullWritable, PersonWritable> {
        @Override
        protected void reduce(IntWritable key, Iterable<PersonWritable> values, Context context) throws IOException, InterruptedException {
            long count = 0L;
            PersonWritable person = null;
            for (PersonWritable data : values) {
                if (Objects.isNull(person)) {
                    person = data;
                }
                count = count + data.getConsumption();
            }
            person.setConsumptions(count);

            PersonWritable personWritable = new PersonWritable(person.getId(), person.getName(), person.getAge(), person.getConsumption(), count);

            context.write(NullWritable.get(), personWritable);
        }
    }

    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration configuration = new Configuration();

        String sourcePath = "data/person.data";
        String distPath = "downloadOut/person-out.data";

        FileUtil.deleteIfExist(configuration, distPath);

        Job job = Job.getInstance(configuration, "person statistics");
        job.setJarByClass(PersonStatistics.class);
        //job.setCombinerClass(PersonStatistics.PersonStatisticsReducer.class);
        job.setMapperClass(PersonStatisticsMapper.class);
        job.setReducerClass(PersonStatisticsReducer.class);
        job.setMapOutputKeyClass(IntWritable.class);
        job.setMapOutputValueClass(PersonWritable.class);
        job.setOutputKeyClass(NullWritable.class);
        job.setOutputValueClass(PersonWritable.class);

        FileInputFormat.addInputPath(job, new Path(sourcePath));
        FileOutputFormat.setOutputPath(job, new Path(distPath));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}
bash 复制代码
# person.data
1,张三,30,10
1,张三,30,20
2,李四,25,5

上述执行结果如下:

分片/InputFormat & InputSplit

官方文档速递

java 复制代码
org.apache.hadoop.mapreduce.InputFormat
org.apache.hadoop.mapreduce.InputSplit

日志

执行 序列化 测试小程序,关注以下日志

bash 复制代码
# 总共加载一个文件,分隔成一个
2024-01-06 09:19:42,363 [main] [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] [INFO] - Total input files to process : 1
2024-01-06 09:19:42,487 [main] [org.apache.hadoop.mapreduce.JobSubmitter] [INFO] - number of splits:1

结束

至此,MapReduce 序列化 至此结束,如有疑问,欢迎评论区留言。

相关推荐
喂完待续2 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
青云交2 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图
还是大剑师兰特8 小时前
Flink面试题及详细答案100道(1-20)- 基础概念与架构
大数据·flink·大剑师·flink面试题
1892280486112 小时前
NY243NY253美光固态闪存NY257NY260
大数据·网络·人工智能·缓存
武子康12 小时前
大数据-70 Kafka 日志清理:删除、压缩及混合模式最佳实践
大数据·后端·kafka
CCF_NOI.14 小时前
解锁聚变密码:从微观世界到能源新未来
大数据·人工智能·计算机·聚变
杨荧14 小时前
基于Python的电影评论数据分析系统 Python+Django+Vue.js
大数据·前端·vue.js·python
数据智研15 小时前
【数据分享】上市公司创新韧性数据(2007-2023)
大数据·人工智能
辞--忧21 小时前
双十一美妆数据分析:洞察消费趋势与行业秘密
大数据
时序数据说1 天前
国内时序数据库概览
大数据·数据库·物联网·时序数据库·iotdb