Python使用multiprocessing模块实现多进程并发处理大数据量

使用multiprocessing模块实现多进程并发地遍历arr1中的值,从arr2中查找是否存在的步骤如下:

  1. 导入multiprocessing模块:import multiprocessing

  2. 创建查找函数:定义一个函数,用于在arr2中查找arr1的值。可以在这个函数中实现具体的查找逻辑,并返回查找结果。

  3. 创建进程池:使用multiprocessing.Pool()函数创建一个进程池,并指定进程池的大小,如pool = multiprocessing.Pool(processes=4)

  4. 提交任务:使用进程池的apply_async()方法提交任务。将查找函数、要查找的值和arr2作为参数传递给apply_async()方法,如pool.apply_async(search_func, (value, arr2))

  5. 等待任务完成:使用进程池的close()方法关闭进程池,然后使用join()方法等待所有任务完成,如pool.close()pool.join()

下面是一个简单的示例代码:

python 复制代码
import multiprocessing

def search_func(value1, array2):
    if value1 in array2:
        f = f"{value1} exists in array2"
        print(f)
        return f
    else:
        f = f"{value1} does not exists in array2"
        print(f)
        return f


if __name__ == "__main__":

    multiprocessing.freeze_support()

    # 创建进程池
    pool = multiprocessing.Pool(processes=4)

    # 提交任务
    # 遍历arr1中的值 从arr2中查找是否存在
    arr1 = [1,2,10]
    arr2 = [1,3,4,6,8,2]

    for v1 in arr1:
        pool.apply_async(search_func, (v1,arr2))

    pool.close()
    pool.join()

1 exists in array2

2 exists in array2

10 does not exists in array2

在上述示例代码中,创建了一个大小为4的进程池,并通过apply_async()方法提交了两个任务。通过观察输出可以看到,这些任务是并发地运行的。请根据自己的具体需求,调整进程池的大小和任务提交的方式。

报错:

复制代码
RuntimeError: 
        An attempt has been made to start a new process before the
        current process has finished its bootstrapping phase.

        This probably means that you are not using fork to start your
        child processes and you have forgotten to use the proper idiom
        in the main module:

            if __name__ == '__main__':
                freeze_support()
                ...

        The "freeze_support()" line can be omitted if the program
        is not going to be frozen to produce an executable.

这个错误是由于在Windows系统上使用multiprocessing模块时未正确处理主模块的逻辑引起的。为了解决这个问题,按照错误信息中给出的建议,在主模块中添加以下代码:

python 复制代码
if __name__ == '__main__':
    multiprocessing.freeze_support()
    # your code here

这样做可以确保在主模块中使用多进程时正确处理进程的启动和初始化过程。请将你的代码放在# your code here的位置,并在主模块中进行进一步测试。

相关推荐
Python图像识别1 天前
71_基于深度学习的布料瑕疵检测识别系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
Wang's Blog1 天前
Linux小课堂: 文件操作警惕高危删除命令与深入文件链接机制
linux·运维·服务器
千码君20161 天前
React Native:从react的解构看编程众多语言中的解构
java·javascript·python·react native·react.js·解包·解构
淮北4941 天前
windows安装minicoda
windows·python·conda
2501_915909061 天前
iOS 混淆实战,多工具组合完成 IPA 混淆与加固(源码 + 成品 + 运维一体化方案)
android·运维·ios·小程序·uni-app·iphone·webview
我科绝伦(Huanhuan Zhou)1 天前
分享一个可以一键制作在线yum源的脚本
linux·运维
爱宇阳1 天前
禅道社区版 Docker Compose 服务迁移教程
运维·docker·容器
Paper_Love1 天前
Linux-查看硬件接口软件占用
linux·运维·服务器
wydaicls1 天前
Linux 系统下 ZONE 区域的划分
linux·运维·服务器
螺旋小蜗1 天前
Linux Cgroup与Device Whitelist详解
linux·运维·服务器·cgroup